91 resultados para Burr grass
Resumo:
1. Mounting an immune response is likely to be costly in terms of energy and nutrients, and so it is predicted that dietary intake should change in response to infection to offset these costs. The present study focuses on the interactions between a specialist grass-feeding caterpillar species, the African armyworm Spodoptera exempta, and an opportunist bacterium, Bacillus subtilis.
2. The main aims of the study were (i) to establish the macronutrient costs to the insect host of surviving a systemic bacterial infection, (ii) to determine the relative importance of dietary protein and carbohydrate to immune system functions, and (iii) to determine whether there is an adaptive change in the host's normal feeding behaviour in response to bacterial challenge, such that the nutritional costs of resisting infection are offset.
3. We show that the survival of bacterially infected larvae increased with increasing dietary protein-to-carbohydrate (P:C) ratio, suggesting a protein cost associated with bacterial resistance. As dietary protein levels increased, there was an increase in antibacterial activity, phenoloxidase (PO) activity and protein levels in the haemolymph, providing a potential source for this protein cost. However, there was also evidence for a physiological trade-off between antibacterial activity and phenoloxidase activity, as larvae whose antibacterial activity levels were elevated in response to immune activation had reduced PO activity.
4. When given a choice between two diets varying in their P:C ratios, larvae injected with a sub-lethal dose of bacteria increased their protein intake relative to control larvae whilst maintaining similar carbohydrate intake levels. These results are consistent with the notion that S. exempta larvae alter their feeding behaviour in response to bacterial infection in a manner that is likely to enhance the levels of protein available for producing the immune system components and other factors required to resist bacterial infections (‘self-medication’).
Palaeobiology of an extinct Ice Age mammal: Stable isotope and cementum analysis of giant deer teeth
Resumo:
The extinct giant deer, Megaloceros giganteus, is among the largest and most famous of the cervids. Megaloceros remains have been uncovered across Europe and western Asia. but the highest concentrations come from Irish bogs and caves Although Megaloceros has enjoyed a great deal of attention over the centuries, paleobiological study has focused oil morphometric and distributional work until now. This paper presents quantitative data that have implications for understanding its sudden extirpation in western Europe during a period of global climate change approximately 10.600 C-14 years ago (ca 12,500 calendar years BP). We report here the first stable isotope analysis of giant deer teeth. which we combine with dental cementum accretion in order to document age, diet and life-history seasonality from birth until death Enamel delta C-13 and delta O-18 measured in the second and third molars from seven individual giant deer Suggest a grass and forbbased diet supplemented with browse in a deteriorating. possibly water-stressed, environment, and a season of birth around spring/early summer Cementurm data indicate that the ages of the specimens ranged from 6.5 to 14 years and that they possessed mature antlers by autumn, similar to extant cervids. In addition. the possibility for combining these two techniques in future mammalian paleoccological studies is considered. The data presented in this study imply that Megoloceros would have indeed been vulnerable to extirpation during the terminal Pleistocene in Ireland. and this information is relevant to understanding the broader pattern of its extinction.
Resumo:
We dated a continuous, ~22-m long sediment sequence from Lake Challa (Mt. Kilimanjaro area, Kenya/Tanzania) to produce a solid chronological framework for multi-proxy reconstructions of climate and environmental change in equatorial East Africa over the past 25,000 years. The age model is based on a total of 168 AMS 14C dates on bulk-organic matter, combined with a 210Pb chronology for recent sediments and corrected for a variable old-carbon age offset. This offset was estimated by i) pairing bulk-organic 14C dates with either 210Pb-derived time markers or 14C dates on grass charcoal, and ii) wiggle-matching high-density series of bulk-organic 14C dates. Variation in the old-carbon age offset through time is relatively modest, ranging from ~450 yr during glacial and late glacial time to ~200 yr during the early and mid-Holocene, and increasing again to ~250 yr today. The screened and corrected 14C dates were calibrated sequentially, statistically constrained by their stratigraphical order. As a result their constrained calendar-age distributions are much narrower, and the calibrated dates more precise, than if each 14C date had been calibrated on its own. The smooth-spline age-depth model has 95% age uncertainty ranges of ~50–230 yr during the Holocene and ~250–550 yr in the glacial section of the record. The d13C values of paired bulk-organic and grass-charcoal samples, and additional 14C dating on selected turbidite horizons, indicates that the old-carbon age offset in Lake Challa is caused by a variable contribution of old terrestrial organic matter eroded from soils, and controlled mainly by changes in vegetation cover within the crater basin.
Resumo:
A microwave reactor system was investigated as a potential technique to maximize sugar yield for the hydrolysis of municipal solid waste for ethanol production. Specifically, dilute acid hydrolysis of a-cellulose and waste cellulosic biomass (grass clippings) with phosphoric acid was undertaken within the microwave reactor system. The experimental data and reaction kinetic analysis indicate that the use of a microwave reactor system can successfully facilitate dilute acid hydrolysis of cellulose and waste cellulosic biomass, producing high yields of total sugars in short reaction times. The maximum yield of reducing sugars was obtained at 7.5% (w/v) phosphoric acid and 160 degrees C, corresponding to 60% of the theoretical total sugars, with a reaction time of 5 min. When using a very low acid concentration (0.4% w/v) for the hydrolysis in the microwave reactor, it was found that 10 g of total sugars/100 g dry mass was produced, which is significant considering the low acid concentration. When hydrolyzing grass clippings using the microwave reactor, the optimum conditions were an acid concentration of 2.5% (w/v), 175 degrees C with a 15 min reaction time, giving 18 g/100 g dry mass of total sugars, with xylose being the sugar with the highest yield. It was observed that pentose sugars were more easily formed but also more easily degraded, these being significantly affected by increases in acid concentration and temperature. Kinetic modeling of the data indicated that the use of microwave heating may account for an increase in reaction rate constant, k(1), found in this study in comparison with conventional systems described in the literature.
THE IMPACT OF GRAZING ON COMMUNITIES OF GROUND-DWELLING SPIDERS (ARANEAE) IN UPLAND VEGETATION TYPES
Resumo:
Adult spider communities were sampled by pitfall trapping over a 24-month period in plots subjected to a range of grazing regimes on five vegetation types on a hill farm in County Antrim, north-east Ireland. Spider community composition was influenced by vegetation type and grazing regime. Variation in the number of individuals and species diversity was also apparent between vegetation types and grazing regime. Plots grazed by all herbivores were characterised by the predominance of species characteristic of disturbed land. Inbye land and areas where grazing had ceased had characteristic coloniser species. The spiders Erigone dentipalpis, Allomengea scopigera and Centromerita bicolor were trapped with greater success in vegetation types where grass species dominated.
Resumo:
1. The population characteristics and distribution of wood mice Apodemus sylvaticus (L.) were investigated along field margins of farmland dominated by grass production. 2. Turnover, sex ratio, breeding season, spatial density dependence and density dependence in reproductive activity indicated that the population ecology of A. sylvaticus is consistent in different habitats in the same geographical region. 3. Spatial variation in the abundance of A.sylvaticus was related negatively to percentage of land under pasture and distance from woodland and positively related to variables associated with food supply and cover. 4. Variation in numbers of overwintered mice at the start of the breeding season was related more closely to breeding opportunity than to environmental factors. This was particularly so in males. 5. The association of overwintered male and female A. sylvaticus remained evident in the later half of the breeding season. Young males and females of the year, however, were distributed more with respect to physical and biological features than towards adults or reproductive opportunity. 6. A. sylvaticus is an important species of field margins, even where these are poorly developed and agriculture is pastoral rather than arable. Further studies of this species in a wider range of agricultural systems are desirable.
Resumo:
Although interest in crossbreeding within dairy systems has increased, the role of Jersey crossbred cows within high concentrate input systems has received little attention. This experiment was designed to examine the performance of Holstein-Friesian (HF) and Jersey x Holstein-Friesian (J x HF) cows within a high concentrate input total confinement system (CON) and a medium concentrate input grazing system (GRZ). Eighty spring-calving dairy cows were used in a 2 (cow genotype) x 2 (milk production system) factorial design experiment. The experiment commenced when cows calved and encompassed a full lactation. With GRZ, cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio] until turnout, grazed grass plus 1.0 kg of concentrate/day during a 199-d grazing period, and grass silage and concentrates (75:25 DM ratio) following rehousing and until drying-off. With CON, cows were confined throughout the lactation and offered diets containing grass silage and concentrates (DM ratio; 40:60, 50:50, 40:40, and 75:25 during d 1 to 100, 101 to 200, 201 to 250, and 251 until drying-off, respectively). Full-lactation concentrate DM intakes were 791 and 2,905 kg/cow for systems GRZ and CON, respectively. Although HF cows had a higher lactation milk yield than J x HF cows, the latter produced milk with a higher fat and protein content, so that solids-corrected milk yield (SCM) was unaffected by genotype. Somatic cell score was higher with the J x HF cows. Throughout lactation, HF cows were on average 37 kg heavier than J x HF cows, whereas the J x HF cows had a higher body condition score. Within each system, food intake did not differ between genotypes, whereas full-lactation yields of milk, fat plus protein, and SCM were higher with CON than with GRZ. A significant genotype x environment interaction was observed for milk yield, and a trend was found for an interaction with SCM. Crossbred cows on CON gained more body condition than HF cows, and overall pregnancy rate was unaffected by either genotype or management system. In summary, milk and SCM yields were higher with CON than with GRZ, whereas genotype had no effect on SCM. However, HF cows exhibited a greater milk yield response and a trend toward a greater SCM yield response with increasing concentrate levels compared with the crossbred cows.
Resumo:
Arcellacea (testate lobose amoebae) communities were assessed from 73 sediment-water interface samples collected from 33 lakes in urban and rural settings within the Greater Toronto Area (GTA), Ontario, Canada, as well as from forested control areas in the Lake Simcoe area, Algonquin Park and eastern Ontario. The results were used to: (1) develop a statistically rigorous arcellacean-based training set for sedimentary phosphorus (Olsen P (OP)) loading; and (2) derive a transfer function to reconstruct OP levels during the post-European settlement era (AD1870s onward) using a chronologically well-constrained core from Haynes Lake on the environmentally sensitive Oak Ridges Moraine, within the GTA. Ordination analysis indicated that OP most influenced arcellacean assemblages, explaining 6.5% (p < 0.005) of total variance. An improved training set where the influence of other important environmental variables (e.g. total organic carbon, total nitrogen, Mg) was reduced, comprised 40 samples from 31 lakes, and was used to construct a transfer function for lacustrine arcellaceans for sedimentary phosphorus (Olsen P) using tolerance downweighted weighted averaging (WA-Tol) with inverse deshrinking (RMSEPjack-77pp; r2jack = 0.68). The inferred reconstruction indicates that OP levels remained near pre-settlement background levels from settlement in the late AD 1970s through to the early AD 1970s. Since OP runoff from both forests and pasture is minimal, early agricultural land use within the lake catchment was as most likely pasture and/or was used to grow perennial crops such as Timothy-grass for hay. A significant increase in inferred OP concentration beginning ~ AD 1972 may have been related to a change in crops (e.g. corn production) in the catchment resulting in more runoff, and the introduction of chemical fertilizers. A dramatic decline in OP after ~ AD 1985 probably corresponds to a reduction in chemical fertilizer use related to advances in agronomy, which permitted a more precise control over required fertilizer application. Another significant increase in OP levels after ~ AD 1995 may have been related to the construction of a large golf course upslope and immediately to the north of Haynes Lake in AD 1993, where significant fertilizer use is required to maintain the fairways. These results demonstrate that arcellaceans have great potential for reconstructing lake water geochemistry and will complement other proxies (e.g. diatoms) in paleolimnological research.
Resumo:
BACKGROUND: The relationship between work-related stress and alcohol intake is uncertain. In order to add to the thus far inconsistent evidence from relatively small studies, we conducted individual-participant meta-analyses of the association between work-related stress (operationalised as self-reported job strain) and alcohol intake. METHODOLOGY AND PRINCIPAL FINDINGS: We analysed cross-sectional data from 12 European studies (n?=?142 140) and longitudinal data from four studies (n?=?48 646). Job strain and alcohol intake were self-reported. Job strain was analysed as a binary variable (strain vs. no strain). Alcohol intake was harmonised into the following categories: none, moderate (women: 1-14, men: 1-21 drinks/week), intermediate (women: 15-20, men: 22-27 drinks/week) and heavy (women: >20, men: >27 drinks/week). Cross-sectional associations were modelled using logistic regression and the results pooled in random effects meta-analyses. Longitudinal associations were examined using mixed effects logistic and modified Poisson regression. Compared to moderate drinkers, non-drinkers and (random effects odds ratio (OR): 1.10, 95% CI: 1.05, 1.14) and heavy drinkers (OR: 1.12, 95% CI: 1.00, 1.26) had higher odds of job strain. Intermediate drinkers, on the other hand, had lower odds of job strain (OR: 0.92, 95% CI: 0.86, 0.99). We found no clear evidence for longitudinal associations between job strain and alcohol intake. CONCLUSIONS: Our findings suggest that compared to moderate drinkers, non-drinkers and heavy drinkers are more likely and intermediate drinkers less likely to report work-related stress.
Resumo:
BACKGROUND: Tobacco smoking is a major contributor to the public health burden and healthcare costs worldwide, but the determinants of smoking behaviours are poorly understood. We conducted a large individual-participant meta-analysis to examine the extent to which work-related stress, operationalised as job strain, is associated with tobacco smoking in working adults. METHODOLOGY AND PRINCIPAL FINDINGS: We analysed cross-sectional data from 15 European studies comprising 166 130 participants. Longitudinal data from six studies were used. Job strain and smoking were self-reported. Smoking was harmonised into three categories never, ex- and current. We modelled the cross-sectional associations using logistic regression and the results pooled in random effects meta-analyses. Mixed effects logistic regression was used to examine longitudinal associations. Of the 166 130 participants, 17% reported job strain, 42% were never smokers, 33% ex-smokers and 25% current smokers. In the analyses of the cross-sectional data, current smokers had higher odds of job strain than never-smokers (age, sex and socioeconomic position-adjusted odds ratio: 1.11, 95% confidence interval: 1.03, 1.18). Current smokers with job strain smoked, on average, three cigarettes per week more than current smokers without job strain. In the analyses of longitudinal data (1 to 9 years of follow-up), there was no clear evidence for longitudinal associations between job strain and taking up or quitting smoking. CONCLUSIONS: Our findings show that smokers are slightly more likely than non-smokers to report work-related stress. In addition, smokers who reported work stress smoked, on average, slightly more cigarettes than stress-free smokers.
Resumo:
BACKGROUND: Published work assessing psychosocial stress (job strain) as a risk factor for coronary heart disease is inconsistent and subject to publication bias and reverse causation bias. We analysed the relation between job strain and coronary heart disease with a meta-analysis of published and unpublished studies. METHODS: We used individual records from 13 European cohort studies (1985-2006) of men and women without coronary heart disease who were employed at time of baseline assessment. We measured job strain with questions from validated job-content and demand-control questionnaires. We extracted data in two stages such that acquisition and harmonisation of job strain measure and covariables occurred before linkage to records for coronary heart disease. We defined incident coronary heart disease as the first non-fatal myocardial infarction or coronary death. FINDINGS: 30?214 (15%) of 197?473 participants reported job strain. In 1·49 million person-years at risk (mean follow-up 7·5 years [SD 1·7]), we recorded 2358 events of incident coronary heart disease. After adjustment for sex and age, the hazard ratio for job strain versus no job strain was 1·23 (95% CI 1·10-1·37). This effect estimate was higher in published (1·43, 1·15-1·77) than unpublished (1·16, 1·02-1·32) studies. Hazard ratios were likewise raised in analyses addressing reverse causality by exclusion of events of coronary heart disease that occurred in the first 3 years (1·31, 1·15-1·48) and 5 years (1·30, 1·13-1·50) of follow-up. We noted an association between job strain and coronary heart disease for sex, age groups, socioeconomic strata, and region, and after adjustments for socioeconomic status, and lifestyle and conventional risk factors. The population attributable risk for job strain was 3·4%. INTERPRETATION: Our findings suggest that prevention of workplace stress might decrease disease incidence; however, this strategy would have a much smaller effect than would tackling of standard risk factors, such as smoking. FUNDING: Finnish Work Environment Fund, the Academy of Finland, the Swedish Research Council for Working Life and Social Research, the German Social Accident Insurance, the Danish National Research Centre for the Working Environment, the BUPA Foundation, the Ministry of Social Affairs and Employment, the Medical Research Council, the Wellcome Trust, and the US National Institutes of Health.
Resumo:
In normal populations of the common grass Holcus lanatus there is a polymorphism for arsenate resistance, manifested as suppressed phosphate uptake (SPU), and controlled by a major gene with dominant expression. A natural population of SPU plants had greater arbuscular-mycorrhizal colonization than wild type, nonSPU plants. It was hypothesized that, in order to survive alongside plants with a normal rate of phosphate (P) uptake, SPU plants would be more dependent on mycorrhizal associations. We performed an experiment using plants with SPU phenotypes from both arsenate mine spoils and uncontaminated soils, as well as plants with a nonSPU phenotype. They were grown with and without a mycorrhizal inoculum and added N, which altered plant P requirements. We showed that grasses with SPU phenotypes accumulated more shoot P than nonSPU plants, the opposite of the expected result. SPY plants also produced considerably more flower panicles, and had greater shoot and root biomass. The persistence of SPU phenotypes in normal populations is not necessarily related to mycorrhizal colonization as there were no differences in percentage AM colonization between the phenotypes. Being mycorrhizal reduced flower biomass production, as mycorrhizal SPU plants had lower shoot P concentrations and produced fewer flower panicles than non-mycorrhizal, nonSPU plants. We now hypothesize that the SPU phenotype is brought about by a genotype that results in increased accumulation of P in shoots, and that suppression of the rate of uptake is a consequence of this high shoot P concentration, operating by means of a homeostatic feedback mechanism. We also postulate that increased flower production is linked to a high shoot P concentration. SPU plants thus allocate more resources into seed production, leading to a higher frequency of SPU genes. Increased reproductive allocation reduces vegetative allocation and may affect competitive ability and hence survival, explaining the maintenance of the polymorphism. As mycorrhizal SPU plants behave more like nonSPU plants, AM colonization itself could play a major part in the maintenance of the SPU polymorphism.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) were determined in soil and vegetation following a large scale chemical fire involving 10,000 ton of polypropylene. In comparison with sites outside the plume from the fire, PAH concentrations were elevated in grass shoots (by up to 70-fold) and in soil (by up to 370-fold). The pattern of PAH dispersion under the plume was dependent on the physical-chemical properties of individual PAHs. The lighter, least hydrophobic PAHs were dispersed into the environment at greater distances than heavier, more hydrophobic PAHs. At the most distant sampling point (4.5 km) under the plume, the low molecular weight PAHs were still considerably elevated in vegetation samples compared to control sites. Dispersion appeared to be regulated by the compounds partitioning between the vapour and particulate phase, with dry particulate deposition occurring closer to the fire source than gaseous deposition. For all PAHs, the fire resulted in greater contamination of soils compared to grasses, with the relative ratio of plant/soil contamination decreasing as hydrophobicity increased.
Resumo:
We have developed a method to extract and separate phytochelatins (PCs)-metal(loid) complexes using parallel metal(loid)-specific (inductively coupled plasma-mass spectrometry) and organic-specific (electrospray ionization-mass spectrometry) detection systems-and use it here to ascertain the nature of arsenic (As)-PC complexes in plant extracts. This study is the first unequivocal report, to our knowledge, of PC complex coordination chemistry in plant extracts for any metal or metalloid ion. The As-tolerant grass Holcus lanatus and the As hyperaccumulator Pteris cretica were used as model plants. In an in vitro experiment using a mixture of reduced glutathione (GS), PC(2), and PC(3), As preferred the formation of the arsenite [As((III))]-PC(3) complex over GS-As((III))-PC(2), As((III))-(GS)(3), As((III))-PC(2), or As((III))-(PC(2))(2) (GS: glutathione bound to arsenic via sulphur of cysteine). In H. lanatus, the As((III))-PC(3) complex was the dominant complex, although reduced glutathione, PC(2), and PC(3) were found in the extract. P. cretica only synthesizes PC(2) and forms dominantly the GS-As((III))-PC(2) complex. This is the first evidence, to our knowledge, for the existence of mixed glutathione-PC-metal(loid) complexes in plant tissues or in vitro. In both plant species, As is dominantly in non-bound inorganic forms, with 13% being present in PC complexes for H. lanatus and 1% in P. cretica.
Resumo:
The deployment of biofuels is significantly affected by policy in energy and agriculture. In the energy arena, concerns regarding the sustainability of biofuel systems and their impact on food prices led to a set of sustainability criteria in EU Directive 2009/28/EC on Renewable Energy. In addition, the 10% biofuels target by 2020 was replaced with a 10% renewable energy in transport target. This allows the share of renewable electricity used by electric vehicles to contribute to the mix in achieving the 2020 target. Furthermore, only biofuel systems that effect a 60% reduction in greenhouse gas emissions by 2020 compared with the fuel they replace are allowed to contribute to meeting the target. In the agricultural arena, cross-compliance (which is part of EU Common Agricultural Policy) dictates the allowable ratio of grassland to total agricultural land, and has a significant impact on which biofuels may be supported. This paper outlines the impact of these policy areas and their implications for the production and use of biofuels in terms of the 2020 target for 10% renewable transport energy, focusing on Ireland. The policies effectively impose constraints on many conventional energy crop biofuels and reinforce the merits of using biomethane, a gaseous biofuel. The analysis shows that Ireland can potentially satisfy 15% of renewable energy in transport by 2020 (allowing for double credit for biofuels from residues and ligno-cellulosic materials, as per Directive 2009/28/EC) through the use of indigenous biofuels: grass biomethane, waste and residue derived biofuels, electric vehicles and rapeseed biodiesel. © 2010 Elsevier Ltd. All rights reserved.