85 resultados para Biomedical and Biological Applications
Resumo:
Two peptides with substance-P-like immunoreactivity were isolated in pure form from an extract of the brain of the elasmobranch fish, Scyliorhinus canicula (european common dogfish). One peptide was identical to scyliorhinin I, previously identified in dogfish intestine, and the second was the undecapeptide Lys-Pro-Arg-Pro-Gly-Gln-Phe-Phe-Gly-Leu-Met-CONH2 which is structurally similar to mammalian substance P Scyliorhinin II or a peptide analogous to mammalian neurokinin A were not detected in the extract. Synthetic dogfish substance P ([Lys1, Arg3, Gly5]substance P) was approximately threefold more potent than mammalian substance P (K(d) = 0.21 +/- 0.11 nM versus K(d)= 0.74 +/- 0.17 nM; mean +/- SD; n = 6) in inhibiting the binding of I-125-labelled substance P to neurokinin (NK1) receptors in rat submandibular gland membranes. The vasodilator action of tachykinins in mammals is mediated primarily through interaction with NK1 receptors. Bolus intravenous injections of [Lys1, Arg3, Gly5]substance P (100 pmol) and scyliorhinin I (100 pmol) produced appreciable (>4 kPa) decreases in arterial blood pressure in the rat whereas intravenous injections of up to 5 nmol of the peptides into conscious, unrestrained dogfish produced no change in arterial blood pressure, pulse amplitude or heart rate. Injections of greater amounts of the peptides (10-50 nmol) produced a slight increase (400-667 Pa) in blood pressure. The data indicate that mammalian-type NK1 tachykinin receptors are not involved in cardiovascular regulation in elasmobranch fish.
Resumo:
OBJECTIVE: To test whether simvastatin improves physiological and biological outcomes in patients undergoing esophagectomy.
BACKGROUND: One-lung ventilation during esophagectomy is associated with inflammation, alveolar epithelial and systemic endothelial injury, and the development of acute lung injury (ALI). Statins that modify many of the underlying processes are a potential therapy to prevent ALI.
METHODS: We conducted a randomized double-blind placebo-controlled trial in patients undergoing esophagectomy. Patients received simvastatin 80 mg or placebo enterally for 4 days preoperatively and 7 days postoperatively. The primary end point was pulmonary dead space (Vd/Vt) at 6 hours after esophagectomy or before extubation. Inflammation was assessed by plasma cytokines and intraoperative exhaled breath condensate pH; alveolar type 1 epithelial injury was assessed by plasma receptor for advanced glycation end products and systemic endothelial injury by the urine albumin-creatinine ratio.
RESULTS: Thirty-nine patients were randomized; 8 patients did not undergo surgery and were excluded. Fifteen patients received simvastatin and 16 received placebo. There was no difference in Vd/Vt or other physiological outcomes. Simvastatin resulted in a significant decrease in plasma MCP-1 on day 3 and reduced exhaled breath condensate acidification. Plasma receptor for advanced glycation end products was significantly lower in the simvastatin-treated group, as was the urine albumin-creatinine ratio on day 7 postsurgery. ALI developed in 4 patients in the placebo group and no patients in the simvastatin group although this difference was not statistically significant (P = 0.1).
CONCLUSIONS: In this proof of concept study, pretreatment with simvastatin in esophagectomy decreased biomarkers of inflammation as well as pulmonary epithelial and systemic endothelial injury.
Resumo:
Yersinia enterocolitica serotype O:9 is a gram-negative enteropathogen that infects animals and humans. The role of lipopolysaccharide (LPS) in Y. enterocolitica O:9 pathogenesis, however, remains unclear. The O:9 LPS consists of lipid A to which is linked the inner core oligosaccharide, serving as an attachment site for both the outer core (OC) hexasaccharide and the O-polysaccharide (OPS; a homopolymer of N-formylperosamine). In this work, we cloned the OPS gene cluster of O:9 and identified 12 genes organized into four operons upstream of the gnd gene. Ten genes were predicted to encode glycosyltransferases, the ATP-binding cassette polysaccharide translocators, or enzymes required for the biosynthesis of GDP-N-formylperosamine. The two remaining genes within the OPS gene cluster, galF and galU, were not ascribed a clear function in OPS biosynthesis; however, the latter gene appeared to be essential for O:9. The biological functions of O:9 OPS and OC were studied using isogenic mutants lacking one or both of these LPS parts. We showed that OPS and OC confer resistance to human complement and polymyxin B; the OPS effect on polymyxin B resistance could be observed only in the absence of OC.
Resumo:
Lipopolysaccharide (LPS) is the major component of the outer leaflet of the outer membrane of Gram-negative bacteria. The LPS molecule is composed of two biosynthetic entities: the lipid A--core and the O-polysaccharide (O-antigen). Most biological effects of LPS are due to the lipid A part, however, there is an increasing body of evidence indicating that O-antigen (O-ag) plays an important role in effective colonization of host tissues, resistance to complement-mediated killing and in the resistance to cationic antimicrobial peptides that are key elements of the innate immune system. In this review, we will discuss: (i) the work done on the genetics and biosynthesis of the O-ags in the genus Yersinia; (ii) the role of O-ag in virulence of these bacteria; (iii) the work done on regulation of the O-ag gene cluster expression and; (iv) the impact that the O-ag expression has on other bacterial surface and membrane components.
Resumo:
This paper reports a surface modification of epoxy-based negative photoresist SU-8 for reducing its autofluorescence while enhancing its biofunctionality. By covalently depositing a thin layer of 20 nm Au nanoparticles (AuNPs) onto the SU-8 surface, we found that the AuNPs-coated SU-8 surface is much less fluorescent than the untreated SU-8. Moreover, DNA probes can easily be immobilized on the Au surface and are thermally stable over a wide range of temperature. These improvements will benefit bioanalytical applications such as DNA hybridization and solid-phase PCR (SP-PCR).
Resumo:
Quantum annealing is a promising tool for solving optimization problems, similar in some ways to the traditional ( classical) simulated annealing of Kirkpatrick et al. Simulated annealing takes advantage of thermal fluctuations in order to explore the optimization landscape of the problem at hand, whereas quantum annealing employs quantum fluctuations. Intriguingly, quantum annealing has been proved to be more effective than its classical counterpart in many applications. We illustrate the theory and the practical implementation of both classical and quantum annealing - highlighting the crucial differences between these two methods - by means of results recently obtained in experiments, in simple toy-models, and more challenging combinatorial optimization problems ( namely, Random Ising model and Travelling Salesman Problem). The techniques used to implement quantum and classical annealing are either deterministic evolutions, for the simplest models, or Monte Carlo approaches, for harder optimization tasks. We discuss the pro and cons of these approaches and their possible connections to the landscape of the problem addressed.