125 resultados para Bioinorganic chemistry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the chemical evolution of large molecules in interstellar clouds. We consider the chemistry and ionisation balance of large polycyclic aromatic hydrocarbon (PAH) type molecules in diffuse clouds and show that certain PAH molecules can be doubly ionised by the interstellar ultraviolet radiation field. If recombination of the dications so produced with electrons is dissociative rather than radiative, then PAHs are rapidly destroyed. PAHs which can only be singly ionised have much smaller recombination energies and can be long lasting in these regions. This type of property may be very important in selecting the PAH species which can populate the general interstellar medium and account for certain of the diffuse bands observed in optical spectra. Destruction of PAH molecules via formation of dications may be responsible for the weakening of the diffuse bands observed in regions of high UV flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot molecular cores in star-forming regions are known to have gas-phase chemical compositions determined by the material evaporated from the icy mantles of interstellar grains, followed by subsequent reactions in the gas phase. Current models suggest that the evaporated material is rich in hydrogenated species. In this paper, we consider the chemistry induced in a hot core by the release of phosphine, PH3 from interstellar grains. We find that PH3 is rapidly destroyed by a series of reactions with atomic hydrogen and is converted, within 10(4) yr, into atomic P, and PO and PN, with P atoms being the most abundant species. Other P-bearing molecules can be formed in the hot gas, but on time-scales that are long compared to those of the hot cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effects of varying the cosmic ray ionization rate in chemical models of dense interstellar clouds. In the absence of such ionization, a scenario which may be applicable to dark cloud cores, we find that chemi-ionization is able to drive a limited ion-neutral chemistry. Models of clouds in starburst galaxies, which may have enhanced cosmic ray fluxes, are also investigated and enable an upper limit to be derived for the cosmic ray ionization rate in M82. The derived value, which is about 700 times the typical value for Galactic molecular clouds, is in good agreement with that necessary to explain the recent observations of C I in this galaxy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent laboratory data on the ion-neutral chemistry of PAH and fullerene ions and molecules have been incorporated into chemical kinetic models of interstellar clouds. The laboratory data show that the-second ionization potentials of many complex molecules are less than the first ionization potential of helium. Thus collisions between He+, generated by cosmic ray ionization, and PAH and fullerene neutrals produce doubly charged cations. I find that these cations, and also protonated neutrals, are abundant in dark clouds. If the recombination of electrons with doubly charged cations, which releases typically 14 eV of energy, is dissociative in nature, then PAH and fullerene species are destroyed m both diffuse and dense clouds on astronomically significant time-scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have modeled the gas phase chemistry of warm molecular material around protostars that is seeded with evaporating grain mantles. We show that the release of simple molecules into the gas drives ion-molecule and neutral chemistries which can account for many of the complex 0-bearing and N-bearing molecules observed in hot cores. Initial grain mantle components and secondary product molecules are identified, and the observational consequences are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate gas-phase chemistry in the remnant 'superwind' of a carbon-rich red giant star, during its transition to a planetary nebula. The interacting stellar winds model is used. It is found that during the first few hundred years of transition, significant abundances of a few small molecules and ions (e.g. CH+, CH2+, CH3+, CH, CH2, NH) may occur in the thin, dense, shocked shell of gas predicted by thiS model, but that most molecules observed in protoplanetary nebulae will be rapidly destroyed, through photodissociation by strong UV from the central star. If dense clumps are present during transition, they may allow the gas-phase formation and/or survival of small amounts of some molecules, such as HCN, CN, C2H2, and HC3N, until about 2000 yr after termination of the superwind; and young, fully developed planetary nebulae may show observable amounts of polyatomic molecules by this means. Such clumping may explain the existence of, e.g., HCN in NGC 7027.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I have used recent laboratory studies on the reactions of the phosphorus hydride ions, PH(n)+ (n = 0-4) to construct a new model of phosphorus chemistry in interstellar clouds. I find that the non-detection of PN in cold, dark clouds in consistent with the chemical models only if the depletion of phosphorus in large, approximately 10(4) in TMC-1. Although the laboratory studies indicate that organo-phosphorus chains C(n)P can be formed, this large depletion precludes the detection of any phosphorus-bearing moleclues in cold clouds. However, in warm clouds associated with star formation, the depletion of phosphorus may be reduced. In this case one can reproduce the PN abundance toward Orion KL with a depletion factor of about 300. Interestingly, if the organo-phosphorus species are not destroyed by O atoms, I predict fractional abundances in Ori KL of between 10(-11) and 10(-10) for C(n)P (n = 2-4) and HCCP.

Relevância:

20.00% 20.00%

Publicador: