54 resultados para Biodiversity Hotspots
Resumo:
In recent years, the concept of a composite performance index, brought from economic and business statistics, has gained popularity in the field of road safety. The construction of the Composite Safety Performance Index (CSPI) involves the following key steps: the selection of the most appropriate indicators to be aggregated and the method used to aggregate them.
Over the last decade, various aggregation methods for estimating the CSPI have been suggested in the literature. However, recent studies indicates that most of these methods suffer from many deficiencies at both the theoretical and operational level; these include the correlation and compensability between indicators, as well as their high “degree of freedom” which enables one to readily manipulate them to produce desired outcomes.
The purpose of this study is to introduce an alternative aggregation method for the estimation of the CSPI, which is free from the aforementioned deficiencies. In contrast with the current aggregation methods, which generally use linear combinations of road safety indicators to estimate a CSPI, the approach advocated in this study is based on non-linear combinations of indicators and can be summarized into the following two main steps: the pairwise comparison of road safety indicators and the development of marginal and composite road safety performance functions. The introduced method has been successfully applied to identify and rank temporal and spatial hotspots for Northern Ireland, using road traffic collision data recorded in the UK STATs19 database. The obtained results highlight the promising features of the proposed approach including its stability and consistency, which enables significantly reduced deficiencies associated with the current aggregation methods. Progressively, the introduced method could evolve into an intelligent support system for road safety assessment.
Resumo:
Despite plant secondary metabolites being major determinants of species interactions and ecosystem processes, their role in the maintenance of biodiversity has received little attention. In order to investigate the relationship between chemical and biological diversity in a natural ecosystem, we considered the impact of chemical diversity in individual Scots pine trees (Pinus sylvestris) on species richness of associated ground vegetation. Scots pine trees show substantial genetically determined constitutive variation between individuals in concentrations of a group of secondary metabolites, the monoterpenes. When the monoterpenes of particular trees were assessed individually, there was no relationship with species richness of associated ground flora. However, the chemical diversity of monoterpenes of individual trees was significantly positively associated with the species richness of the ground vegetation beneath each tree, mainly the result of an effect among the non-woody vascular plants. This correlation suggests that the chemical diversity of the ecosystem dominant species has an important role in shaping the biodiversity of the associated plant community. The extent and significance of this effect, and its underlying processes require further investigation.
Resumo:
1. Using data on the spatial distribution of the British avifauna, we address three basic questions about the spatial structure of assemblages: (i) Is there a relationship between species richness (alpha diversity) and spatial turnover of species (beta diversity)? (ii) Do high richness locations have fewer species in common with neighbouring areas than low richness locations?, and (iii) Are any such relationships contingent on spatial scale (resolution or quadrat area), and do they reflect the operation of a particular kind of species-area relationship (SAR)?
2. For all measures of spatial turnover, we found a negative relationship with species richness. This held across all scales, with the exception of turnover measured as beta (sim).
3. Higher richness areas were found to have more species in common with neighbouring areas.
4. The logarithmic SAR fitted better than the power SAR overall, and fitted significantly better in areas with low richness and high turnover.
5. Spatial patterns of both turnover and richness vary with scale. The finest scale richness pattern (10 km) and the coarse scale richness pattern (90 km) are statistically unrelated. The same is true of the turnover patterns.
6. With coarsening scale, locations of the most species-rich quadrats move north. This observed sensitivity of richness 'hotspot' location to spatial scale has implications for conservation biology, e.g. the location of a reserve selected on the basis of maximum richness may change considerably with reserve size or scale of analysis.
7. Average turnover measured using indices declined with coarsening scale, but the average number of species gained or lost between neighbouring quadrats was essentially scale invariant at 10-13 species, despite mean richness rising from 80 to 146 species (across an 81-fold area increase). We show that this kind of scale invariance is consistent with the logarithmic SAR.
Resumo:
Public concern over biodiversity loss is often rationalized as a threat to ecosystem functioning, but biodiversity-ecosystem functioning (BEF) relations are hard to empirically quantify at large scales. We use a realistic marine food-web model, resolving species over five trophic levels, to study how total fish production changes with species richness. This complex model predicts that BEF relations, on average, follow simple Michaelis-Menten curves when species are randomly deleted. These are shaped mainly by release of fish from predation, rather than the release from competition expected from simpler communities. Ordering species deletions by decreasing body mass or trophic level, representing 'fishing down the food web', accentuates prey-release effects and results in unimodal relationships. In contrast, simultaneous unselective harvesting diminishes these effects and produces an almost linear BEF relation, with maximum multispecies fisheries yield at approximate to 40% of initial species richness. These findings have important implications for the valuation of marine biodiversity.
Resumo:
To value something, you first have to know what it is. Bartkowski et al. (2015) reveal a critical weakness: that biodiversity has rarely, if ever, been defined in economic valuations of putative biodiversity. Here we argue that a precise definition is available and could help focus valuation studies, but that in using this scientific definition (a three-dimensional measure of total difference), valuation by stated-preference methods becomes, at best, very difficult.We reclassify the valuation studies reviewed by Bartkowski et al. (2015) to better reflect the biological definition of biodiversity and its potential indirect use value as the support for provisioning and regulating services. Our analysis shows that almost all of the studies reviewed by Bartkowski et al. (2015) were not about biodiversity, but rather were about the 'vague notion' of naturalness, or sometimes a specific biological component of diversity. Alternative economic methods should be found to value biodiversity as it is defined in natural science. We suggest options based on a production function analogy or cost-based methods. Particularly the first of these provides a strong link between economic theory and ecological research and is empirically practical. Since applied science emphasizes a scientific definition of biodiversity in the design and justification of conservation plans, the need for economic valuation of this quantitative meaning of biodiversity is considerable and as yet unfulfilled.
Resumo:
Herring, Clupea harengus, is one of the ecologically and commercially most important species in European northern seas, where two distinct ecotypes have been described based on spawning time; spring and autumn. To date, it is unknown if these spring and autumn spawning herring constitute genetically distinct units. We assessed levels of genetic divergence between spring and autumn spawning herring in the Baltic Sea using two types of DNA markers, microsatellites and Single Nucleotide Polymorphisms, and compared the results with data for autumn spawning North Sea herring. Temporally replicated analyses reveal clear genetic differences between ecotypes and hence support reproductive isolation. Loci showing non-neutral behaviour, so-called outlier loci, show convergence between autumn spawning herring from demographically disjoint populations, potentially reflecting selective processes associated with autumn spawning ecotypes. The abundance and
exploitation of the two ecotypes have varied strongly over space and time in the Baltic Sea, where autumn spawners have faced strong depression for decades. The results therefore have practical implications by highlighting the need for specific management of these co-occurring ecotypes to meet requirements for sustainable exploitation and ensure optimal livelihood for coastal communities.