85 resultados para Binary mask
Resumo:
This paper reports both the binary and ternary phase behavior of ionic liquids for extracting cyclohexanecarboxylic acid (CCA) from dodecane. This system is a model for the extraction of acids representative of naphthenic acids found in crude oils. In order to develop an effective ternary liquid-liquid extraction system the preliminary selection of ionic liquids was based on CCA miscibility and the dodecane immiscibility with selected ILs. A wide range of ILs based on different cations, anions, cation alkyl-chain length, as well as the effect of temperature on the overall fluid phase behavior is reported. Factors such as variation of cation group, anion effect, alkyl-chain length, and temperature all impact the extraction to various degrees. The largest effects were found to be the lipophilicity of the IL cation and the co-ordination ability of the anion. While CCA capacity increased with lipophilicity of the cation, as did the dodecane. Highly coordinating anions such as trifluoroacetate and triflate demonstrated that highly efficient extraction could be obtained producing favorable tie-lines in the ternary phase diagram. Overall, this study demonstrates that ILs can selectively extract acids from hydrocarbon streams and offers possible treatment solutions for problems associated with the processing of high acid crude oils.
Resumo:
Densities, rho, of aqueous solutions of the room temperature protic ionic liquid (PIL), pyrrolidinium nitrate are determined at the atmospheric pressure over the temperature range from (283.15 to 323.15) K and within the whole composition range. The molar isobaric heat capacities, C(p), and refractive index, n(D), of {PIL + water} binary system are measured at 298.15 K. The excess molar volumes V(E), excess molar isobaric heat capacities C(p)(E), and deviation from ideality of refractive index Delta(phi)n, of pyrrolidinium nitrate aqueous solutions were deduced from the experimental results as well as apparent molar volumes V(phi), partial molar volumes (V) over bar (m,i), and thermal expansion coefficients alpha(p). The V(E) values were found to be positive over the entire composition range at all temperatures studied therein, whereas deviations from ideality were negative for refractive index Delta(phi)n. The volumetric properties of binary mixtures containing water and four other protic ionic liquids, such as pyrrolidinium hydrogen sulfate, pyrrolidinium formiate, collidinium formate, and diisopropyl-ethylammonium formate were also determined at 298.15 K. Results have been then discussed in terms of molecular interactions and molecular structures in these binary mixtures. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In most granulation processes involving processing of a mixture of powders, the powders have comparable densities and similar particle size distributions. Granulation of powders with large variation differences in powder densities is usually avoided due problems such as particle segregation. The granular product being designed in this work required the use of two different powders namely limestone and teawaste; these materials have different bulk and particle densities.The overall aim of the project was to obtain a granular product in
the size range 2 to 4mm. The two powders were granulated in different proportions using carboxymethyl cellose (CMC) as the binder. The effect of amount of binder added, relative composition of the powder, and type of tea wasted on the product yield was studied. The results show that the optimum product yield was a function of both relative powder composition and the amount of binder used; increasing the composition of teawaste in the powder increased the amount of binder required for successful granulation.Increasing the mass fraction of teawaste in the powder mix must be accompanied by an increase in the amount of binder to achieve the desired product yield. It was found that attrition losses decreased with increasing binder content.
Resumo:
The structure and dynamics of the common polysaccharide dextran have been investigated in mixed solvents at two different temperatures using small-angle X-ray scattering (SAXS) and viscosity measurements. More specifically, binary mixtures of a good solvent (water, formamide, dimethylsulfoxide, ethanolamine) and the bad solvent ethanol as the minority component have been considered. The experimentally observed effects on the polymer conformation (intrinsic viscosity, coil radius, and radius of gyration) of the bad solvent addition are discussed in terms of hydrogen bonding density and are correlated with the Hansen solubility parameters and the surface tension of the solvent mixtures. Hydrogen bonding appears to be an important contributor to the solubility of dextran but is not sufficient to capture the dextran coil contraction in the mixtures of good+bad solvents.
Resumo:
The star 1SWASP J024743.37-251549.2 was recently discovered to be a binary star in which an A-type dwarf star eclipses the remnant of a disrupted red giant star (WASP 0247-25 B). The remnant is in a rarely observed state evolving to higher effective temperatures at nearly constant luminosity prior to becoming a very low mass white dwarf composed almost entirely of helium, i.e. it is a pre-helium white dwarf (pre-He-WD). We have used the photometric database from theWide Angle Search for Planets (WASP) to find 17 eclipsing binary stars with orbital periods P = 0.7-2.2 d with similar light curves to 1SWASP J024743.37-251549.2. The only star in this group previously identified as a variable star is the brightest one, EL CVn, which we adopt as the prototype for this class of eclipsing binary star. The characteristic light curves of EL CVn-type stars show a total eclipse by an A-type dwarf star of a smaller, hotter star and a secondary eclipse of comparable depth to the primary eclipse. We have used new spectroscopic observations for six of these systems to confirm that the companions to the A-type stars in these binaries have very low masses (≈0.2M⊙). This includes the companion to EL CVn which was not previously known to be a pre-He-WD. EL CVn-type binary star systems will enable us to study the formation of very low mass white dwarfs in great detail, particularly in those cases where the pre-He-WD star shows non-radial pulsations similar to those recently discovered in WASP0247-25 B. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
The most active binary PtSn catalyst for direct ethanol fuel cell applications has been studied at 20 oC and 60 oC, using variable temperature electrochemical in-situ FTIR. In comparison with Pt, binary PtSn inhibits ethanol dissociation to CO(a), but promotes partial oxidation to acetaldehyde and acetic acid. Increasing the temperature from 20 oC to 60 oC facilitates both ethanol dissociation to CO(a) and their further oxidation to CO2, leading to an increased selectivity towards CO2; however, acetaldehyde and acetic acid are still the main products. Potential-dependent phase diagrams for surface oxidants of OH(a) formation on Pt(111), Pt(211) and Sn modified Pt(111) and Pt(211) surfaces have been determined using density functional theory (DFT) calculations. It is shown that Sn promotes the formation of OH(a) with a lower onset potential on the Pt(111) surface, whereas an increase in the onset potential is found on modification of the (211) surface. In addition, Sn inhibits the Pt(211) step edge with respect to ethanol C-C bond breaking compared with that found on the pure Pt, which reduces the formation of CO(a). Sn was also found to facilitate ethanol dehydrogenation and partial oxidation to acetaldehyde and acetic acid which, combined with the more facile OH(a) formation on the Pt(111) surface, gives us a clear understanding of the experimentally determined results. This combined electrochemical in-situ FTIR and DFT study, provides, for the first time, an insight into the long-term puzzling features of the high activity but low CO2 production found on binary PtSn ethanol fuel cell catalysts.
Resumo:
The granular product being designed in this work required the use of two different powders namely limestone and teawaste; these materials have different bulk and particle densities. The overall aim of the project was to obtain a granular product in the size range of 2 to 4. mm. The two powders were granulated in different proportions using carboxymethylcellulose (CMC) as the binder. The effect of amount of binder added, relative composition of the powder, and type of teawaste on the product yield was studied. The results show that the optimum product yield was a function of both relative powder composition and the amount of binder used; increasing the composition of teawaste in the powder increased the amount of binder required for successful granulation. An increase in the mass fraction of teawaste in the powder mix must be accompanied by an increase in the amount of binder to maintain the desired product yield.
Resumo:
We report on a low-damage method for direct and rapid fabrication of arrays of epitaxial BiFeO3(BFO) nanoislands. An array of aluminium dots is evaporated through a stencil mask on top of an epitaxial BiFeO3 thin film. Low energy focused ion beam milling of an area several microns wide containing the array-covered film leads to removal of the bismuth ferrite in between the aluminium-masked dots. By chemical etching of the remaining aluminium, nanoscale epitaxial bismuth ferrite islands with diameter ∼250 nm were obtained. Piezoresponse force microscopy showed that as-fabricated structures exhibited good piezoelectric and ferroelectric properties, with polarization state retention of several days.
Resumo:
Aflatoxin B1 (AFB1), ochratoxin A (OTA) and fumonisin B1 (FB1) are contaminants which have been shown to regularly co-occur in a range of foods. However, only a small number of studies have evaluated the interactive effect of binary and tertiary mycotoxins. The present study evaluated the effects of low levels of each mycotoxin in combination at their EU regulatory limits. Toxic effect with respect to cell viability was measured by MTT and neutral red assays, assessing mitochondria and lysosome integrities respectively. Individual toxicity showed that OTA (10 μg/ml) was the most cytotoxic mycotoxin in all three cell lines studied (caco-2, MDBK and raw 264.7). Binary combinations were cytotoxic to the MDBK cell line in the order [OTA/FB1] > [AFB1/FB1] > [AFB1/OTA], whilst all effects observed were classified as being additive. Tertiary combinations of AFB1, FB1 and OTA at the EU regulatory limits were tested and not found to exhibit measurable cytotoxicity in MDBK, caco-2 or raw 264.7 cells. However by increasing these concentrations above the legal limits to OTA (3 μg/ml), FB1 (8 μg/ml) and AFB1 (1.28 μg/ml), cytotoxicity was observed with up to 26% reduction in cell viability and synergistic effects were evident with regard to mitochondrial integrity. © 2014 Elsevier Ltd. All rights reserved.