144 resultados para Bean bacterial wilt
Resumo:
1. Mounting an immune response is likely to be costly in terms of energy and nutrients, and so it is predicted that dietary intake should change in response to infection to offset these costs. The present study focuses on the interactions between a specialist grass-feeding caterpillar species, the African armyworm Spodoptera exempta, and an opportunist bacterium, Bacillus subtilis.
2. The main aims of the study were (i) to establish the macronutrient costs to the insect host of surviving a systemic bacterial infection, (ii) to determine the relative importance of dietary protein and carbohydrate to immune system functions, and (iii) to determine whether there is an adaptive change in the host's normal feeding behaviour in response to bacterial challenge, such that the nutritional costs of resisting infection are offset.
3. We show that the survival of bacterially infected larvae increased with increasing dietary protein-to-carbohydrate (P:C) ratio, suggesting a protein cost associated with bacterial resistance. As dietary protein levels increased, there was an increase in antibacterial activity, phenoloxidase (PO) activity and protein levels in the haemolymph, providing a potential source for this protein cost. However, there was also evidence for a physiological trade-off between antibacterial activity and phenoloxidase activity, as larvae whose antibacterial activity levels were elevated in response to immune activation had reduced PO activity.
4. When given a choice between two diets varying in their P:C ratios, larvae injected with a sub-lethal dose of bacteria increased their protein intake relative to control larvae whilst maintaining similar carbohydrate intake levels. These results are consistent with the notion that S. exempta larvae alter their feeding behaviour in response to bacterial infection in a manner that is likely to enhance the levels of protein available for producing the immune system components and other factors required to resist bacterial infections (‘self-medication’).
Resumo:
Aggregations or blooms of jellyfish are increasingly problematic for the aquaculture industry. Jellyfishassociated mass mortalities of sea-caged fish are most often caused by swarms of oceanic species like Pelagia noctiluca. These relatively large jellyfish get carried by tides and currents onto fish cages, causing them to break up into pathogenic nematocyst-containing pieces that are capable of passing through the mesh of the cages. The main effect on fish is gill damage leading to respiratory distress, but the lesions may also be compounded by bacterial infection, Tenacibaculum maritimum being one of the pathogens involved. In our previous study, we highlighted the ability of the jellyfish Phialella quadrata to carry this important pathogen. However, since these small jellyfish were collected around sea-cages of infected salmon, it was not possible to determine if the jellyfish or the fish themselves were the original source of the bacteria. Results of the current study demonstrate that these filamentous bacteria are present on the mouth of P. noctiluca that had no previous contact with farmed fish. These new results highlight the fact that some Cnidarian species harbour T. maritimum and suggest that jellyfishmight be a natural host for these bacteria whose environmental reservoir has not yet been determined.
Resumo:
Bacterial 16S rRNA genes transduced by bacteriophages were identified and analyzed in order to estimate the extent of the bacteriophage-mediated horizontal gene transfer in the wastewater environment. For this purpose, phage and bacterial DNA was isolated from the oxidation tank of a municipal wastewater treatment plant. Phylogenetic analysis of the 16S rRNA gene sequences cloned from a phage metagenome revealed that bacteriophages transduce genetic material in several major groups of bacteria. The groups identified were as follows: Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Actinomycetales and Firmicutes. Analysis of the 16S rRNA gene sequences in the total bacterial DNA from the same sample revealed that several bacterial groups found in the oxidation tank were not present in the phage metagenome (e.g. Deltaproteobacteria, Nitrospira, Planctomycetes and many Actinobacteria genera). These results suggest that transduction in a wastewater environment occurs in several bacterial groups; however, not all species are equally involved into this process. The data also showed that a number of distinctive bacterial strains participate in transduction-mediated gene transfer within identified bacterial groupings. Denaturing gradient gel electrophoresis analysis confirmed that profiles of the transduced 16S rRNA gene sequences and those present in the whole microbial community show significant differences.
Resumo:
Phage metagenomes isolated from wastewater over a 12-month period were analyzed. The results suggested that various strains of Proteobacteria, Bacteroidetes, and other phyla are likely to participate in transduction. The patterns of 16S rRNA sequences found in phage metagenomes did not follow changes in the total bacterial community.
Resumo:
The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography-mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gamma-proteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.
Resumo:
Asymmetric heteroatom oxidation of benzo[b]thiophenes to yield the corresponding sulfoxides was catalysed by toluene dioxygenase (TDO), naphthalene dioxygenase (NDO) and styrene monooxygenase (SMO) enzymes present in P. putida mutant and E. coli recombinant whole cells. TDO-catalysed oxidation yielded the relatively unstable benzo[b] thiophene sulfoxide; its dimerization, followed by dehydrogenation, resulted in the isolation of stable tetracyclic sulfoxides as minor products with cis-dihydrodiols being the dominant metabolites. SMO mainly catalysed the formation of enantioenriched benzo[b] thiophene sulfoxide and 2-methyl benzo[b] thiophene sulfoxides which racemized at ambient temperature. The barriers to pyramidal sulfur inversion of 2- and 3-methyl benzo[b] thiophene sulfoxide metabolites, obtained using TDO and NDO as biocatalysts, were found to be ca.: 25-27 kcal mol(-1). The absolute configurations of the benzo[b] thiophene sulfoxides were determined by ECD spectroscopy, X-ray crystallography and stereochemical correlation. A site-directed mutant E. coli strain containing an engineered form of NDO, was found to change the regioselectivity toward preferential oxidation of the thiophene ring rather than the benzene ring.
Resumo:
Enzyme-catalysed kinetic resolution and asymmetric dihydroxylation routes to enantiopure cis-diol metabolites of arenes and benzocycloalkenes of either absolute configuration have been developed using appropriate strains of the bacterium Pseudomonas putida.
Resumo:
Selected strains of the bacterium Pseudomonas putida (previously shown to effect dioxygenase-catalysed asymmetric cis-dihydroxylation of alkenes) have been found to yield chiral sulfoxides from the corresponding sulfides with a strong preference for the (R)- or (S)-configurations but without evidence of sulfone formation; similar results obtained using an Escherichia coli clone (pKST11, containing the Tod C1 C2 B and A genes encoding toluene dioxygenase from P. putida NCIMB 11767) are again consistent with a stereoselective dioxygenase-catalysed sulfoxidation.
Resumo:
This review will summarize the significant body of research within the field of electrical methods of controlling the growth of microorganisms. We examine the progress from early work using current to kill bacteria in static fluids to more realistic treatment scenarios such as flow-through systems designed to imitate the human urinary tract. Additionally, the electrical enhancement of biocide and antibiotic efficacy will be examined alongside recent innovations including the biological applications of acoustic energy systems to prevent bacterial surface adherence. Particular attention will be paid to the electrical engineering aspects of previous work, such as electrode composition, quantitative electrical parameters and the conductive medium used. Scrutiny of published systems from an electrical engineering perspective will help to facilitate improved understanding of the methods, devices and mechanisms that have been effective in controlling bacteria, as well as providing insights and strategies to improve the performance of such systems and develop the next generation of antimicrobial bioelectric materials.