68 resultados para Bayesian rationality
Resumo:
This paper addresses the problem of learning Bayesian network structures from data based on score functions that are decomposable. It describes properties that strongly reduce the time and memory costs of many known methods without losing global optimality guarantees. These properties are derived for different score criteria such as Minimum Description Length (or Bayesian Information Criterion), Akaike Information Criterion and Bayesian Dirichlet Criterion. Then a branch-and-bound algorithm is presented that integrates structural constraints with data in a way to guarantee global optimality. As an example, structural constraints are used to map the problem of structure learning in Dynamic Bayesian networks into a corresponding augmented Bayesian network. Finally, we show empirically the benefits of using the properties with state-of-the-art methods and with the new algorithm, which is able to handle larger data sets than before.
Resumo:
Retrospective clinical datasets are often characterized by a relatively small sample size and many missing data. In this case, a common way for handling the missingness consists in discarding from the analysis patients with missing covariates, further reducing the sample size. Alternatively, if the mechanism that generated the missing allows, incomplete data can be imputed on the basis of the observed data, avoiding the reduction of the sample size and allowing methods to deal with complete data later on. Moreover, methodologies for data imputation might depend on the particular purpose and might achieve better results by considering specific characteristics of the domain. The problem of missing data treatment is studied in the context of survival tree analysis for the estimation of a prognostic patient stratification. Survival tree methods usually address this problem by using surrogate splits, that is, splitting rules that use other variables yielding similar results to the original ones. Instead, our methodology consists in modeling the dependencies among the clinical variables with a Bayesian network, which is then used to perform data imputation, thus allowing the survival tree to be applied on the completed dataset. The Bayesian network is directly learned from the incomplete data using a structural expectation–maximization (EM) procedure in which the maximization step is performed with an exact anytime method, so that the only source of approximation is due to the EM formulation itself. On both simulated and real data, our proposed methodology usually outperformed several existing methods for data imputation and the imputation so obtained improved the stratification estimated by the survival tree (especially with respect to using surrogate splits).
Resumo:
This paper presents new results for the (partial) maximum a posteriori (MAP) problem in Bayesian networks, which is the problem of querying the most probable state configuration of some of the network variables given evidence. It is demonstrated that the problem remains hard even in networks with very simple topology, such as binary polytrees and simple trees (including the Naive Bayes structure), which extends previous complexity results. Furthermore, a Fully Polynomial Time Approximation Scheme for MAP in networks with bounded treewidth and bounded number of states per variable is developed. Approximation schemes were thought to be impossible, but here it is shown otherwise under the assumptions just mentioned, which are adopted in most applications.
Resumo:
This paper presents new results for the (partial) maximum a posteriori (MAP) problem in Bayesian networks, which is the problem of querying the most probable state configuration of some of the network variables given evidence. First, it is demonstrated that the problem remains hard even in networks with very simple topology, such as binary polytrees and simple trees (including the Naive Bayes structure). Such proofs extend previous complexity results for the problem. Inapproximability results are also derived in the case of trees if the number of states per variable is not bounded. Although the problem is shown to be hard and inapproximable even in very simple scenarios, a new exact algorithm is described that is empirically fast in networks of bounded treewidth and bounded number of states per variable. The same algorithm is used as basis of a Fully Polynomial Time Approximation Scheme for MAP under such assumptions. Approximation schemes were generally thought to be impossible for this problem, but we show otherwise for classes of networks that are important in practice. The algorithms are extensively tested using some well-known networks as well as random generated cases to show their effectiveness.
Resumo:
This paper addresses the estimation of parameters of a Bayesian network from incomplete data. The task is usually tackled by running the Expectation-Maximization (EM) algorithm several times in order to obtain a high log-likelihood estimate. We argue that choosing the maximum log-likelihood estimate (as well as the maximum penalized log-likelihood and the maximum a posteriori estimate) has severe drawbacks, being affected both by overfitting and model uncertainty. Two ideas are discussed to overcome these issues: a maximum entropy approach and a Bayesian model averaging approach. Both ideas can be easily applied on top of EM, while the entropy idea can be also implemented in a more sophisticated way, through a dedicated non-linear solver. A vast set of experiments shows that these ideas produce significantly better estimates and inferences than the traditional and widely used maximum (penalized) log-likelihood and maximum a posteriori estimates. In particular, if EM is adopted as optimization engine, the model averaging approach is the best performing one; its performance is matched by the entropy approach when implemented using the non-linear solver. The results suggest that the applicability of these ideas is immediate (they are easy to implement and to integrate in currently available inference engines) and that they constitute a better way to learn Bayesian network parameters.
Resumo:
This paper strengthens the NP-hardness result for the (partial) maximum a posteriori (MAP) problem in Bayesian networks with topology of trees (every variable has at most one parent) and variable cardinality at most three. MAP is the problem of querying the most probable state configuration of some (not necessarily all) of the network variables given evidence. It is demonstrated that the problem remains hard even in such simplistic networks.
Resumo:
This paper presents new results on the complexity of graph-theoretical models that represent probabilities (Bayesian networks) and that represent interval and set valued probabilities (credal networks). We define a new class of networks with bounded width, and introduce a new decision problem for Bayesian networks, the maximin a posteriori. We present new links between the Bayesian and credal networks, and present new results both for Bayesian networks (most probable explanation with observations, maximin a posteriori) and for credal networks (bounds on probabilities a posteriori, most probable explanation with and without observations, maximum a posteriori).
Resumo:
This paper investigates a representation language with flexibility inspired by probabilistic logic and compactness inspired by relational Bayesian networks. The goal is to handle propositional and first-order constructs together with precise, imprecise, indeterminate and qualitative probabilistic assessments. The paper shows how this can be achieved through the theory of credal networks. New exact and approximate inference algorithms based on multilinear programming and iterated/loopy propagation of interval probabilities are presented; their superior performance, compared to existing ones, is shown empirically.
Resumo:
Mobile malware has been growing in scale and complexity as smartphone usage continues to rise. Android has surpassed other mobile platforms as the most popular whilst also witnessing a dramatic increase in malware targeting the platform. A worrying trend that is emerging is the increasing sophistication of Android malware to evade detection by traditional signature-based scanners. As such, Android app marketplaces remain at risk of hosting malicious apps that could evade detection before being downloaded by unsuspecting users. Hence, in this paper we present an effective approach to alleviate this problem based on Bayesian classification models obtained from static code analysis. The models are built from a collection of code and app characteristics that provide indicators of potential malicious activities. The models are evaluated with real malware samples in the wild and results of experiments are presented to demonstrate the effectiveness of the proposed approach.
Resumo:
We study the computational complexity of finding maximum a posteriori configurations in Bayesian networks whose probabilities are specified by logical formulas. This approach leads to a fine grained study in which local information such as context-sensitive independence and determinism can be considered. It also allows us to characterize more precisely the jump from tractability to NP-hardness and beyond, and to consider the complexity introduced by evidence alone.
Resumo:
We present a method for learning Bayesian networks from data sets containing thousands of variables without the need for structure constraints. Our approach is made of two parts. The first is a novel algorithm that effectively explores the space of possible parent sets of a node. It guides the exploration towards the most promising parent sets on the basis of an approximated score function that is computed in constant time. The second part is an improvement of an existing ordering-based algorithm for structure optimization. The new algorithm provably achieves a higher score compared to its original formulation. Our novel approach consistently outperforms the state of the art on very large data sets.