196 resultados para BRADYKININ-POTENTIATING PEPTIDES
Resumo:
Brevinins are peptides of 24 amino acid residues, originally isolated from the skin of the Oriental frog, Rana brevipoda porsa, by nature of their microbicidal activity against a wide range of Gram-positive and Gram-negative bacteria and against strains of pathogenic fungi. cDNA libraries were constructed from lyophilized skin secretion of three, unstudied species of Chinese frog, Odorrana schmackeri, Odorrana versabilis and Pelophylax plancyi fukienensis, using our recently developed technique. In this report, we describe the “shotgun” cloning of novel brevinins by means of 3'-RACE, using a “universal” degenerate primer directed towards a highly conserved nucleic acid sequence domain within the 5'-untranslated region of previously characterized frog skin peptide cDNAs. Novel brevinins, deduced from cloned cDNA open-reading frames, were subsequently identified as mature peptides in the same samples of respective species skin secretions. Bioinformatic analysis of both prepro-brevinin nucleic acid sequences and translated open-reading frame amino acid sequences revealed a highly conserved signal peptide domain and a hypervariable anti-microbial peptide-encoding domain. The experimental approach described here can thus rapidly provide robust structural data on skin anti-microbial peptides without harming the donor amphibians.
Resumo:
Bradykinin and (Thr6)-bradykinin have been identified in the defensive skin secretion of the fire-bellied toad, Bombina orientalis. The homologous cDNAs for both peptides were cloned from a skin library using a 3'- and 5'-RACE strategy. Kininogen-1 (BOK-1) contained an open-reading frame of 167 amino acid residues encoding four repeats of bradykinin, and kininogen-2 (BOK-2) contained an open-reading frame of 161 amino acid residues encoding two repeats of (Thr6)-bradykinin. Alignment of both precursor nucleotide and amino acid sequences revealed a high degree of structural similarity. These amphibian skin kininogens/preprobradykinins are not biologically analogous to mammalian kininogens.