59 resultados para Aviation
Resumo:
People are now becoming more environmentally aware and as a consequence of this, industries such as the aviation industry are striving to design more environmentally friendly products. To achieve this, the current design methodologies must be modified to ensure these issues are considered from product conception through to disposal. This paper discusses the environmental problems in relation to the aviation industry and highlights some logic for making the change from the traditional Systems Engineering approach to the recent design paradigm known as Value Driven Design. Preliminary studies have been undertaken to aid in the understanding of this methodology and the existing surplus value objective function. The main results from the work demonstrate that surplus value works well bringing disparate issues such as manufacture and green taxes together to aid decision making. Further, to date studies on surplus value have used simple sensitivity analysis, but deeper consideration shows non-linear interactions between some of the variables and further work will be needed to fully account for complex issues such as environmental impact and taxes.
Resumo:
The increasing demand for fast air transportation around the clock
has increased the number of night flights in civil aviation over
the past few decades. In night aviation, to land an aircraft, a
pilot needs to be able to identify an airport. The approach
lighting system (ALS) at an airport is used to provide
identification and guidance to pilots from a distance. ALS
consists of more than $100$ luminaires which are installed in a
defined pattern following strict guidelines by the International
Civil Aviation Organization (ICAO). ICAO also has strict
regulations for maintaining the performance level of the
luminaires. However, once installed, to date there is no automated
technique by which to monitor the performance of the lighting. We
suggest using images of the lighting pattern captured using a camera
placed inside an aircraft. Based on the information contained
within these images, the performance of the luminaires has to be
evaluated which requires identification of over $100$ luminaires
within the pattern of ALS image. This research proposes analysis
of the pattern using morphology filters which use a variable
length structuring element (VLSE). The dimension of the VLSE changes
continuously within an image and varies for different images.
A novel
technique for automatic determination of the VLSE is proposed and
it allows successful identification of the luminaires from the
image data as verified through the use of simulated and real data.
Resumo:
In this paper the authors propose a new technique for determining a confidence factor applied to the performance prediction of individual luminaires within an overall pattern of luminaires. This work has relevance to any application where it is necessary to determine the performance of a lighting pattern e.g. street lighting, signal lighting etc. In this paper we apply our technique to a transportation application, namely, an airport landing lighting pattern. In the aviation industry it is imperative that the landing lighting pattern at individual airports performs according to standards. We have developed an automated technique which can be used to access the performance of luminaires within this pattern. We extend this work to also derive a confidence factor related to this prediction based on the quality of the data being utilised. ©2010 IEEE.
Resumo:
This article provides an overview of a novel prototype device that can be used to aid airports in monitoring their landing lighting. Known as Aerodrome Ground Lighting (AGL), the device is comprised of a camera that is capable of capturing images of landing lighting as aircraft approach the airport. AGL is designed to automatically examine landing lighting to assess if it is operating under uniform brightness standards (i.e., luminous intensity of luminares) that aviation governing bodies require. A detailed discussion of the hardware and software requirements of AGL -- currently under joint development by researchers at Queens University Belfast and Cobham Flight Inspection Limited -- is presented. Results from the research indicate that assessing the performance of both ground-based runway luminaries and elevated approach luminaries is possible, though further testing is needed for full validation.
Resumo:
With the introduction of budget airlines and greater competitiveness amongst all airlines, air travel has now become an extremely popular form of travel, presenting its own unique set of risks from food poisoning. Foodborne illness associated with air travel is quite uncommon in the modern era. However, when it occurs, it may have serious implications for passengers and when crew are affected, has the potential to threaten safety. Quality, safe, in-flight catering relies on high standards of food preparation and storage; this applies at the airport kitchens (or at subcontractors' facilities), on the aircraft and in the transportation vehicles which carry the food from the ground source to the aircraft. This is especially challenging in certain countries. Several foodborne outbreaks have been recorded by the airline industry as a result of a number of different failures of these systems. These have provided an opportunity to learn from past mistakes and current practice has, therefore, reached such a standard so as to minimise risk of failures of this kind. This review examines: (i) the origin of food safety in modern commercial aviation; (ii) outbreaks which have occurred previously relating to aviation travel; (iii) the microbiological quality of food and water on board commercial aircraft; and (iv) how Hazard Analysis Critical Control Points may be employed to maintain food safety in aviation travel.
Resumo:
The traditional training of surgeons focused exclusively on developing knowledge, clinical expertise, and technical (surgical) skills. However, analyses of the reasons for adverse events in surgery have revealed that many underlying causes originate from behavioural or non-technical aspects of performance (eg, poor communication among members of the surgical team) rather than from a lack of surgical (ie, technical) skills. Therefore, technical skills appear to be necessary but not sufficient to ensure patient safety. Paying attention to non-technical skills, such as team working, leadership, situation awareness, decision making, and communication, will increase the likelihood of maintaining high levels of error-free performance. Identification and training of non-technical skills has been developed for high-risk careers, such as civil aviation and nuclear power. Only recently, training in non-technical skills has been adopted by the surgical world and anaesthetists. Non-technical skills need to be tailored to the environment where they are used, and eye surgery has some substantial differences compared with other surgical areas, for example, high volume of surgery, use of local anaesthetics, and very sophisticated equipment. This review highlights the need for identification of the non-technical skills relevant to eye surgeons and promotion of their use in the training of eye surgeons.
Resumo:
With a significant growth in the use of titanium alloys in the aviation manufacturing industry, the key challenge of making high-quality holes in the aircraft assembly process needs to be addressed. In this work, case studies deploying traditional drilling and helical milling technologies are carried out to investigate the tool life and hole surface integrity for hole-making of titanium alloy. Results show that the helical milling process leads to much longer tool life, generally lower hole surface roughness, and higher hole subsurface microhardness. In addition, no plastically deformed layer or white layer has been observed in holes produced by helical milling. In contrast, a slightly softened region was always present on the drilled surface. The residual stress distributions within the hole surface, including compressive and tensile residual stress, have also been investigated in detail.
Resumo:
Under the European Union Renewable Energy Directive each Member State is mandated to ensure that 10% of transport energy (excluding aviation and marine transport) comes from renewable sources by 2020. The Irish Government intends to achieve this target with a number of policies including ensuring that 10% of all vehicles in the transport fleet are powered by electricity by 2020. This paper investigates the impact of the 10% electric vehicle target in Ireland in 2020 using a dynamic programming based long term generation expansion planning model. The model developed optimizes power dispatch using hourly electricity demand curves up to 2020, while incorporating generator characteristics and certain operational requirements such as energy not served and loss of load probability while satisfying constraints on environmental emissions, fuel availability and generator operational and maintenance costs. Two distinct scenarios are analysed based on a peak and off-peak charging regimes in order to simulate the effects of the electric vehicles charging in 2020. The importance and influence of the charging regimes on the amount of energy used and tailgate emissions displaced is then determined.
Resumo:
Re-imagining of the aerial transportation system has become increasingly important as the need for significant environmental and economic efficiency gains has become ever more prevalent. A number of studies have highlighted the benefits of the adoption of air to air refuelling within civil aviation. However, it also opens up the potential for increased flexibility in operations through smaller aircraft, shifting emphasis away from the traditional hub and spoke method of operation towards the more flexible Point to Point operations. It is proposed here that one technology can act as an enabler for the other, realising benefits that neither can realise as a standalone. The impact of an air-toair refuelling enabled point to point system is discussed, and the affect on economic and environmental cost metrics relative to traditional operations evaluated. An idealised airport configuration study shows the difference in fuel burn for point to point networks to vary from -23% to 28% from that of Hub and Spoke depending on the configuration. The sensitive natures of the concepts are further explored in a second study based on real airport configurations. The complex effect of the choice of a Point to Point or Hub and Spoke system on fuel burn, operating cost and revenue potential is highlighted. Fuel burn savings of 15% can be experienced with AAR over traditional refuelling operations, with point to point networks increasing the available seat miles (by approximately 20%) without a proportional increase in operating cost or fuel.
Resumo:
Making Ireland Modern is a cross-disciplinary, inter-institutional, inter-media design and research project which emerged from an open competition (won by Boyd and McLaughlin) to commission/curate the Irish pavilion for the Venice biennale 2014. It explores the relationship between architecture, infrastructure and technology in the building of a new nation. Constructed as a demountable, open matrix of drawings, photographs, models and other artefacts, the exhibition (12 x 5 x 6 metres) presents ten infrastructural episodes – Negation, Electricity, Health, Transportation, Television, Aviation, Education, Telecommunications, Motorways, Data – spanning a period of one hundred years from 1916-2016. Exploring a range of scales from the detail design of objects to entire landscapes and other territories, Making Ireland Modern describes architecture’s role in transforming the physical and cultural identity of the new state through its intersession in the everyday lives of its population. In 2015, we were commissioned by the Arts Council of Ireland to expand and develop the pavilion for a three cities tour of Ireland as one of the five major strands of the Arts Council’s Art2016 programme of Irish State’s 1916-2016 centennial celebrations (2016).
Resumo:
Key content
- Trainees face many challenges in learning the skill set required to perform laparoscopic surgery.
- The time spent in the operating room has been detrimentally impacted upon since the implementation of the European Working Time Directive. In order to address the deficit, surgical educators have looked to the benefits enjoyed in the aviation and sports industries in using simulation training.
Learning objectives
- To summarise the current understanding of the neuropsychological basis of learning a psychomotor skill.
- To clarify factors that influence the acquisition of these skills.
- To summarise how this information can be used in teaching and assessment of laparoscopic skills.
Ethical issues
- The use of virtual reality simulators may be able to form a part of the aptitude assessment in the selection process, in order to identify trainees with the desired attributes to progress into the training programmes. However, as skill improves with practice, is it ethical to exclude novices with poor initial performance assessment before allowing them the opportunities to improve?