98 resultados para Automated proof
Resumo:
This article discusses the identification of nonlinear dynamic systems using multi-layer perceptrons (MLPs). It focuses on both structure uncertainty and parameter uncertainty, which have been widely explored in the literature of nonlinear system identification. The main contribution is that an integrated analytic framework is proposed for automated neural network structure selection, parameter identification and hysteresis network switching with guaranteed neural identification performance. First, an automated network structure selection procedure is proposed within a fixed time interval for a given network construction criterion. Then, the network parameter updating algorithm is proposed with guaranteed bounded identification error. To cope with structure uncertainty, a hysteresis strategy is proposed to enable neural identifier switching with guaranteed network performance along the switching process. Both theoretic analysis and a simulation example show the efficacy of the proposed method.
Resumo:
Abstract
Background: Automated closed loop systems may improve adaptation of the mechanical support to a patient's ventilatory needs and
facilitate systematic and early recognition of their ability to breathe spontaneously and the potential for discontinuation of
ventilation.
Objectives: To compare the duration of weaning from mechanical ventilation for critically ill ventilated adults and children when managed
with automated closed loop systems versus non-automated strategies. Secondary objectives were to determine differences
in duration of ventilation, intensive care unit (ICU) and hospital length of stay (LOS), mortality, and adverse events.
Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2); MEDLINE (OvidSP) (1948 to August 2011); EMBASE (OvidSP) (1980 to August 2011); CINAHL (EBSCOhost) (1982 to August 2011); and the Latin American and Caribbean Health Sciences Literature (LILACS). In addition we received and reviewed auto-alerts for our search strategy in MEDLINE, EMBASE, and CINAHL up to August 2012. Relevant published reviews were sought using the Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessment Database (HTA Database). We also searched the Web of Science Proceedings; conference proceedings; trial registration websites; and reference lists of relevant articles.
Selection criteria: We included randomized controlled trials comparing automated closed loop ventilator applications to non-automated weaning
strategies including non-protocolized usual care and protocolized weaning in patients over four weeks of age receiving invasive mechanical ventilation in an intensive care unit (ICU).
Data collection and analysis: Two authors independently extracted study data and assessed risk of bias. We combined data into forest plots using random-effects modelling. Subgroup and sensitivity analyses were conducted according to a priori criteria.
Main results: Pooled data from 15 eligible trials (14 adult, one paediatric) totalling 1173 participants (1143 adults, 30 children) indicated that automated closed loop systems reduced the geometric mean duration of weaning by 32% (95% CI 19% to 46%, P =0.002), however heterogeneity was substantial (I2 = 89%, P < 0.00001). Reduced weaning duration was found with mixed or
medical ICU populations (43%, 95% CI 8% to 65%, P = 0.02) and Smartcare/PS™ (31%, 95% CI 7% to 49%, P = 0.02) but not in surgical populations or using other systems. Automated closed loop systems reduced the duration of ventilation (17%, 95% CI 8% to 26%) and ICU length of stay (LOS) (11%, 95% CI 0% to 21%). There was no difference in mortality rates or hospital LOS. Overall the quality of evidence was high with the majority of trials rated as low risk.
Authors' conclusions: Automated closed loop systems may result in reduced duration of weaning, ventilation, and ICU stay. Reductions are more
likely to occur in mixed or medical ICU populations. Due to the lack of, or limited, evidence on automated systems other than Smartcare/PS™ and Adaptive Support Ventilation no conclusions can be drawn regarding their influence on these outcomes. Due to substantial heterogeneity in trials there is a need for an adequately powered, high quality, multi-centre randomized
controlled trial in adults that excludes 'simple to wean' patients. There is a pressing need for further technological development and research in the paediatric population.
Resumo:
Tissue microarray (TMA) is a high throughput analysis tool to identify new diagnostic and prognostic markers in human cancers. However, standard automated method in tumour detection on both routine histochemical and immunohistochemistry (IHC) images is under developed. This paper presents a robust automated tumour cell segmentation model which can be applied to both routine histochemical tissue slides and IHC slides and deal with finer pixel-based segmentation in comparison with blob or area based segmentation by existing approaches. The presented technique greatly improves the process of TMA construction and plays an important role in automated IHC quantification in biomarker analysis where excluding stroma areas is critical. With the finest pixel-based evaluation (instead of area-based or object-based), the experimental results show that the proposed method is able to achieve 80% accuracy and 78% accuracy in two different types of pathological virtual slides, i.e., routine histochemical H&E and IHC images, respectively. The presented technique greatly reduces labor-intensive workloads for pathologists and highly speeds up the process of TMA construction and provides a possibility for fully automated IHC quantification.
Resumo:
The aim of this study was to develop an Egg Hatch Assay (EHA) test for the detection of triclabendazole (TCBZ) resistance in Fasciola hepatica. A number of fluke isolates were used, of differing sensitivity to TCBZ. Eggs were exposed to solutions of triclabendazole sulphoxide (TCBZ.SO) for 14 days, then triggered to hatch. Egg development was divided into 6 distinct and easily identifiable stages: dead, empty, unembryonated, cell division, eye spot and hatched. The number of eggs reaching those stages was recorded. Initially, the discriminating dose (1% hatch) was determined for the Cullompton isolate, used as TCBZ-susceptible (TCBZ-S) standard. Once this concentration had been resolved, the response of different isolates to this concentration was examined. The hatch rate of the Fairhurst isolate was not significantly different from that of the Cullompton isolate, confirming its TCBZ-S status. The Patagonia isolate has not been exposed to TCBZ in the field and should be TCBZ-S: the results of the EHA supported this. The egg hatch response of the Oberon and Dutch isolates differed significantly from that of the Cullompton isolate; the former isolates are regarded as TCBZ-resistant (TCBZ-R) and the results confirmed this. Another isolate, the Leon isolate, was originally described as being TCBZ-R, but has since been shown to be TCBZ-S. There was no difference in its response to TCBZ.SO in the EHA from the Cullompton (and Fairhurst and Patagonia) isolate(s), further indicating its TCBZ-S status. The impact of TCBZ.SO treatment on the component stages of egg development was determined and revealed differences between the isolates. In conclusion, the results of the study have shown that it is possible to discriminate between TCBZ-S and TCBZ-R isolates of F. hepatica on the basis of the response of their eggs to an EHA and the test could be used to evaluate the TCBZ sensitivity of unknown field isolates
Resumo:
Automated examination timetabling has been addressed by a wide variety of methodologies and techniques over the last ten years or so. Many of the methods in this broad range of approaches have been evaluated on a collection of benchmark instances provided at the University of Toronto in 1996. Whilst the existence of these datasets has provided an invaluable resource for research into examination timetabling, the instances have significant limitations in terms of their relevance to real-world examination timetabling in modern universities. This paper presents a detailed model which draws upon experiences of implementing examination timetabling systems in universities in Europe, Australasia and America. This model represents the problem that was presented in the 2nd International Timetabling Competition (ITC2007). In presenting this detailed new model, this paper describes the examination timetabling track introduced as part of the competition. In addition to the model, the datasets used in the competition are also based on current real-world instances introduced by EventMAP Limited. It is hoped that the interest generated as part of the competition will lead to the development, investigation and application of a host of novel and exciting techniques to address this important real-world search domain. Moreover, the motivating goal of this paper is to close the currently existing gap between theory and practice in examination timetabling by presenting the research community with a rigorous model which represents the complexity of the real-world situation. In this paper we describe the model and its motivations, followed by a full formal definition.
Resumo:
An Automated Interpulse Duration Assessment system (AIDA) is described which permits detection of irregularities in cardiac rhythms in selected invertebrates. The sensitivity of AIDA was demonstrated by its ability to detect handling stress in mussels (Mytilus edulis) that was not evident when measuring heart rate alone. Changes in cardiac activity patterns of crabs (Carcinus maenas) held in the laboratory for up to 10 wk was also examined using the new technique. The frequency distribution of interpulse duration changed significantly as the nutritional state changed. Potential applications of the AIDA system are discussed.
Resumo:
In this paper, we present a methodology for implementing a complete Digital Signal Processing (DSP) system onto a heterogeneous network including Field Programmable Gate Arrays (FPGAs) automatically. The methodology aims to allow design refinement and real time verification at the system level. The DSP application is constructed in the form of a Data Flow Graph (DFG) which provides an entry point to the methodology. The netlist for parts that are mapped onto the FPGA(s) together with the corresponding software and hardware Application Protocol Interface (API) are also generated. Using a set of case studies, we demonstrate that the design and development time can be significantly reduced using the methodology developed.