88 resultados para Arteries Radiography
Ionography of Submicron Foils and Nanostructures Using Ion Flow Generated in FS-Laser Cluster Plasma
Resumo:
A novel type of submicron ion radiography designed to image low-contrast objects, including nanofoils, membranes and biological structures, is proposed. It is based on femtosecond-laser-driven-cluster- plasma source of multicharged ions and polymer dosimeter film CR-39. The intense isotropic ion flow was produced by femtosecond Ti:Sa laser pulses with intensity similar to 4x10(17) W/cm(2) absorbed in the supersonic jet of the mixed He and CO2 gases. Two Focusing Spectrometers with Spatial Resolution (FSSR) were used to measure X-ray spectra of H-and He-like multicharged oxygen ions. The spectra testify that ions with energy more than 300 keV were radiated in different directions from the plasma source. High contrast ion radiography images were obtained for 2000 dpi metal mesh, 1 mu m polypropylene and 100 nm Zr foils as well as for the different biological objects. Images were recorded on a 1 mm thick CR-39 detector, placed in contact with back surface of the imaged samples at the distances 140 -160 mm from the ion source. The spatial resolution of the image no worse than 600 nm was provided. A difference in object thickness of 100 nm was very well resolved for both Zr and polymer foils. The ion radiography images recorded at different angles from the source, demonstrated almost uniform spatial distribution of ion with total number of 10(8) per shot. (C) 2009 WILEY-VCH Vertag GmbH & Co. KGaA, Weinheim
Resumo:
The proton radiography technique has been used to investigate the incidence of a 3 x10(19) W/cm(2) infrared pulse with a 125 mu m-diameter gold wire. The laser interaction is observed to drive the growth of a radial electric field similar to 10(10) V/m on the surface of the wire which rises and decays over a temporal window of 20 ps. Such studies of the ultrafast charging of a solid irradiated at high-intensity may be of relevance to schemes for laser-driven ion acceleration and the fast-ignitor concept for inertial confinement fusion.
Resumo:
The direct observation and full characterization of a phase space electron hole (EH) generated during laser-matter interaction is presented. This structure, propagating in a tenuous, nonmagnetized plasma, has been detected via proton radiography during the irradiation with a ns laser pulse (I?2 ˜ 1014 W/cm2) of a gold hohlraum. This technique has allowed the simultaneous detection of propagation velocity, potential, and electron density spatial profile across the EH with fine spatial and temporal resolution allowing a detailed comparison with theoretical and numerical models.
Resumo:
Blood vessels are made up of several distinct cell types. Although it was originally thought that the tunica media of blood vessels was composed of a homogeneous population of fully differentiated smooth muscle cells, more recent data suggest the existence of multiple smooth muscle cell subpopulations in the vascular wall. One of the cell types contributing to this heterogeneity is the novel, irregularly shaped, noncontractile cell with thin processes, termed interstitial cell, found in the tunica media of both veins and arteries. While the principal role of interstitial cells in veins seems to be pacemaking, the role of arterial interstitial cells is less clear. This review summarises the knowledge of the functional and structural properties of vascular interstitial cells accumulated so far, offers hypotheses on their physiological role, and proposes directions for future research.
Resumo:
High power lasers are a tool that can be used to determine important parameters in the context of Warm Dense Matter, i.e. at the convergence of low-temperature plasma physics and finite-temperature condensed matter physics. Recent results concerning planet inner core materials such as water and iron are presented. We determined the equation of state, temperature and index of refraction of water for pressures up to 7 Mbar. The release state of iron in a LiF window allowed us to investigate the melting temperature near the inner core boundary conditions. Finally, the first application of proton radiography to the study of shocked material is also discussed.
Resumo:
This study has examined the localisation and receptor-binding of the endothelins in retina and choroid of human and rat origin. Immunoreactivity to anti-ET1 and anti-ET3 was investigated in trypsin digests, frozen sections and ultrathin sections using immunocytochemistry and immunogold labelling techniques. In addition, receptor binding of 125I-ET1 and 125I-ET3 was visualised and quantified using autoradiography and image analysis. Intense immunoreactivity to anti-ET1 and anti-ET3 was observed in the photoreceptor inner segments and in the outer plexiform layer (OPL) of human and rat retina. Ultrastructural localisation using immunogold labelling confirmed the presence of ET1 and ET3 in the photoreceptor cells. In retinal vascular digests, ET1 was visualised in the arteries, arterioles and at the pre-arteriolar sphincters, however, immunoreactivity to anti-ET3 was absent in the retinal vasculature. Both ETA and ETB-type receptor binding sites to 125I-ET1 and 125I-ET3 were detected in the vascular smooth muscle of choroidal and retinal vessels with the former being predominant. Extravascular binding sites of the ETB-type were found in the ganglion cell layer.
Resumo:
BACKGROUND: Advanced glycation endproducts (AGEs) arise from the spontaneous reaction of reducing sugars with the amino groups of macromolecules. AGEs accumulate in tissue as a consequence of diabetes and aging and have been causally implicated in the pathogenesis of several of the end-organ complications of diabetes and aging, including cataract, atherosclerosis, and renal insufficiency. It has been recently proposed that components in mainstream cigarette smoke can react with plasma and extracellular matrix proteins to form covalent adducts with many of the properties of AGEs. We wished to ascertain whether AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers.
MATERIALS AND METHODS: Lens and coronary artery specimens from nondiabetic smokers and nondiabetic nonsmokers were examined by immunohistochemistry, immunoelectron microscopy, and ELISA employing several distinct anti-AGE antibodies. In addition, lenticular extracts were tested for AGE-associated fluorescence by fluorescence spectroscopy.
RESULTS: Immunoreactive AGEs were present at significantly higher levels in the lenses and lenticular extracts of nondiabetic smokers (p < 0.003). Anti-AGE immunogold staining was diffusely distributed throughout lens fiber cells. AGE-associated fluorescence was significantly increased in the lenticular extracts of nondiabetic smokers (p = 0.005). AGE-immunoreactivity was significantly elevated in coronary arteries from nondiabetic smokers compared with nondiabetic nonsmokers (p = 0.015).
CONCLUSIONS: AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers than in nonsmokers, irrespective of diabetes. In view of previous reports implicating AGEs in a causal association with numerous pathologies, these findings have significant ramifications for understanding the etiopathology of diseases associated with smoking, the single greatest preventable cause of morbidity and mortality in the United States.
Resumo:
The onset of filamentation, following the interaction of a relatively long (tau(L) similar or equal to 1 ns) and intense (I-L similar or equal to 5 x 10(14) W/cm(2)) laser pulse with a neopentane filled gas bag target, has been experimentally studied via the proton radiography technique, in conditions of direct relevance to the indirect drive inertial confinement fusion scheme. The density gradients associated with filamentation onset have been spatially resolved yielding direct and unambiguous evidence of filament formation and quantitative information about the filamentation mechanism in agreement with previous theoretical modelings. Experimental data confirm that, once spatially smoothed laser beams are used, filamentation is not a relevant phenomenon during the heating laser beams propagation through typical hohlraum gas fills.
Resumo:
This study aimed to test these hypotheses: cystathionine gamma-lyase (CSE) is expressed in a human artery, it generates hydrogen sulfide (H2S), and H2S relaxes a human artery. H2S is produced endogenously in rat arteries from cysteine by CSE. Endogenously produced H2S dilates rat resistance arteries. Although CSE is expressed in rat arteries, its presence in human blood vessels has not been described. In this study, we showed that both CSE mRNA, determined by reverse transcription-polymerase chain reaction, and CSE protein, determined by Western blotting, apparently occur in the human internal mammary artery (internal thoracic artery). Artery homogenates converted cysteine to H2S, and the H2S production was inhibited by DL-propargylglycine, an inhibitor of CSE. We also showed that H2S relaxes phenylephrine-precontracted human internal mammary artery at higher concentrations but produces contraction at low concentrations. The latter contractions are stronger in acetylcholine-prerelaxed arteries, suggesting inhibition of nitric oxide action. The relaxation is partially blocked by glibenclamide, an inhibitor of K-ATP channels. The present results indicate that CSE protein is expressed in human arteries, that human arteries synthesize H2S, and that higher concentrations of H2S relax human arteries, in part by opening K-ATP channels. Low concentrations of H2S contract the human internal mammary artery, possibly by reacting with nitric oxide to form an inactive nitrosothiol. The possibility that CSE, and the H2S it generates, together play a physiological role in regulating the diameter of arteries in humans, as has been demonstrated in rats, should be considered.
Resumo:
Introduction: The laboratory mouse is a powerful tool in cardiovascular research. In this report, we describe a method for a reproducible mouse myocardial infarction model that would allow subsequent comparative and quantitative studies on molecular and pathophysiological variables. Methods: (A) The distribution of the major coronary arteries including the septal artery in the left ventricle of the C57BL/6J mice (n=20) was mapped by perfusion of latex dye or fluorescent beads through the aorta. (B) The territory of myocardial infarction after the ligation of the most proximal aspect of the left anterior descending (LAD) coronary artery was quantified. (C) The consistency in the histological changes parallel to the infarction at different time points was analyzed. Results: (A) The coronary artery tree of the mouse is different from human and, particularly, in regard to the blood supply of the septum. (B) Contrary to previous belief, the septal coronary artery in the mouse is variable in origin. (C) A constant ligation of the LAD immediately below the left auricular level ensures a statistically significant reproducible infarct size. (D) The ischemic changes can be monitored at a histological level in a way similar to what is described in the human. Conclusion: We illustrate a method for maximal reproducibility of experimental acute myocardial infarction in the mouse model, due to a consistent loss of perfusion in the lower half of the left ventricle. This will allow the study of molecular and physiological variables in a controlled and quantifiable experimental model environment. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Objective: Waveform analysis has been used to assess vascular resistance and predict cardiovascular events. We aimed to identify microvascular abnormalities in patients with impaired glucose tolerance (IGT) using ocular waveform analysis. The effects of pioglitazone were also assessed. Methods: Forty patients with IGT and twenty-four controls were studied. Doppler velocity recordings were obtained from the central retinal, ophthalmic and common carotid arteries, and sampled at 200 Hz. A discrete wavelet-based analysis method was employed to quantify waveforms. The resistive index (RI),was also determined. Patients with IGT were randomised to pioglitazone or placebo and measurements repeated after 12 weeks treatment. Results: In the ocular waveforms, significant differences in power spectra were observed in frequency band four (corresponding to frequencies between 6.25 and 12.50 Hz) between groups (p
Resumo:
One way to restore physiological blood flow to occluded arteries involves the deformation of plaque using an intravascular balloon and preventing elastic recoil using a stent. Angioplasty and stent implantation cause unphysiological loading of the arterial tissue, which may lead to tissue in-growth and reblockage; termed “restenosis.” In this paper, a computational methodology for predicting the time-course of restenosis is presented. Stress-induced damage, computed using a remaining life approach, stimulates inflammation (production of matrix degrading factors and growth stimuli). This, in turn, induces a change in smooth muscle cell phenotype from contractile (as exists in the quiescent tissue) to synthetic (as exists in the growing tissue). In this paper, smooth muscle cell activity (migration, proliferation, and differentiation) is simulated in a lattice using a stochastic approach to model individual cell activity. The inflammation equations are examined under simplified loading cases. The mechanobiological parameters of the model were estimated by calibrating the model response to the results of a balloon angioplasty study in humans. The simulation method was then used to simulate restenosis in a two dimensional model of a stented artery. Cell activity predictions were similar to those observed during neointimal hyperplasia, culminating in the growth of restenosis. Similar to experiment, the amount of neointima produced increased with the degree of expansion of the stent, and this relationship was found to be highly dependant on the prescribed inflammatory response. It was found that the duration of inflammation affected the amount of restenosis produced, and that this effect was most pronounced with large stent expansions. In conclusion, the paper shows that the arterial tissue response to mechanical stimulation can be predicted using a stochastic cell modeling approach, and that the simulation captures features of restenosis development observed with real stents. The modeling approach is proposed for application in three dimensional models of cardiovascular stenting procedures.
Resumo:
Maternal diabetes mellitus is associated with increased teratogenesis, which can occur in pregestational type 1 and type 2 diabetes. Cardiac defects and with neural tube defects are the most common malformations observed in fetuses of pregestational diabetic mothers. The exact mechanism by which diabetes exerts its teratogenic effects and induces embryonic malformations is unclear. Whereas the sequelae of maternal pregestational diabetes, such as modulating insulin levels, altered fat levels, and increased reactive oxygen species, may play a role in fetal damage during diabetic pregnancy, hyperglycemia is thought to be the primary teratogen, causing particularly adverse effects on cardiovascular development. Fetal cardiac defects are associated with raised maternal glycosylated hemoglobin levels and are up to five times more likely in infants of mothers with pregestational diabetes compared with those without diabetes. The resulting anomalies are varied and include transposition of the great arteries, mitral and pulmonary atresia, double outlet of the right ventricle, tetralogy of Fallot, and fetal cardiomyopathy.
Resumo:
Proton imaging has become a common diagnostic technique for use in laser-plasma research experiments due to their ability to diagnose electric field effects and to resolve small density differences caused through shock effects. These interactions are highly dependent on the use of radiochromic film (RCF) as a detection system for the particle probe, and produces very high-resolution images. However, saturation effects, and in many cases, damage to the film limits the usefulness of this technique for high-flux particle probing. This paper outlines the use of a new technique using contact radiography of (p,n)-generated isotopes in activation samples to produce high dynamic range 2D images with high spatial resolution and extremely high dynamic range, whilst maintaining both energy resolution and absolute flux measurements. (C)007 Elsevier B.V. All rights reserved.
Resumo:
The central and peripheral cardiovascular effects of synthetic trout urotensin II (UII) were investigated in the conscious rainbow trout. Intracerebroventricular injection of 50 pmol UII produced a slight (3%) but significant (P < 0.05) increase in heart rate but had no effect on mean arterial blood pressure. Injection of 500 pmol UII icy produced a significant (P < 0.05) rise (8%) in blood pressure with no change in heart rate. In contrast to the weak presser effect of centrally administered UII, intra-arterial injection of UII produced a dose-dependent increase in arterial blood pressure and decrease in heart rate with significant (P < 0.05) effects on both parameters observed at a dose of 25 pmol. Higher doses of the peptide produced a sustained decrease in cardiac output that accompanied the bradycardia and rise in arterial blood pressure. The UII-induced bradycardia, but not the increase in pressure, was abolished by pretreatment with phentolamine. Trout UII produced a sustained and dose-dependent contraction of isolated vascular rings prepared from trout efferent branchial [-log 50% of the concentration producing maximal contraction (pD(2)) = 8.30] and celiacomesenteric (pD(2) = 8.22) arteries but was without effects on vascular rings from the anterior cardinal vein. The data indicate that the presser effect of UII in trout is mediated predominantly, if not exclusively, by an increase in systemic vascular resistance. The UII-induced hypertensive response does not seem to involve release of catecholamines, but the bradycardia may arise from adrenergic-mediated activation of cardioinhibitory baroreflexes.