53 resultados para Ankle-Foot Orthosis
Resumo:
BACKGROUND - : Vascular endothelial cell growth factor plays a pivotal role in angiogenesis via regulating endothelial cell proliferation. The X-box binding protein 1 (XBP1) is believed to be a signal transducer in the endoplasmic reticulum stress response. It is unknown whether there is crosstalk between vascular endothelial cell growth factor signaling and XBP1 pathway.
METHODS AND RESULTS - : We found that vascular endothelial cell growth factor induced the kinase insert domain receptor internalization and interaction through C-terminal domain with the unspliced XBP1 and the inositol requiring enzyme 1 α in the endoplasmic reticulum, leading to inositol requiring enzyme 1 α phosphorylation and XBP1 mRNA splicing, which was abolished by siRNA-mediated knockdown of kinase insert domain receptor. Spliced XBP1 regulated endothelial cell proliferation in a PI3K/Akt/GSK3β/β- catenin/E2F2-dependent manner and modulated the cell size increase in a PI3K/Akt/GSK3β/β-catenin/E2F2-independent manner. Knockdown of XBP1 or inositol requiring enzyme 1 α decreased endothelial cell proliferation via suppression of Akt/GSK3β phosphorylation, β-catenin nuclear translocation, and E2F2 expression. Endothelial cell-specific knockout of XBP1 (XBP1ecko) in mice retarded the retinal vasculogenesis in the first 2 postnatal weeks and impaired the angiogenesis triggered by ischemia. Reconstitution of XBP1 by Ad-XBP1s gene transfer significantly improved angiogenesis in ischemic tissue in XBP1ecko mice. Transplantation of bone marrow from wild-type o XBP1ecko mice could also slightly improve the foot blood reperfusion in ischemic XBP1ecko mice.
CONCLUSIONS - : These results suggest that XBP1 can function via growth factor signaling pathways to regulate endothelial proliferation and angiogenesis.
Resumo:
AIM: To estimate the incidence of severe chemical corneal injuries in the UK and describe presenting clinical features and initial management.
METHODS: All patients with severe chemical corneal injury in the UK from December 2005 to November 2006 inclusive were prospectively identified using the British Ophthalmological Surveillance Unit. Reporting ophthalmologists provided information regarding presentation and follow-up.
RESULTS: Twelve cases were identified, giving a minimum estimated incidence in the UK of severe chemical corneal injury of 0.02 per 100,000. 66.7% of injuries were in males of working age, 50% occurred at work, and alkali was causative in 66.7%. Only one patient was wearing eye protection at the time of injury, 75% received immediate irrigation. Six patients required one or more surgical procedures, most commonly amniotic membrane graft. At 6 months' follow-up, the best-corrected visual acuity was 6/12 or better in five patients, and worse than 6/60 in two.
CONCLUSION: The incidence of severe chemical corneal injury in the UK is low. The cases that occur can require extended hospital treatment, with substantial ocular morbidity and visual sequelae. Current enforcement of eye protection in the workplace in the UK has probably contributed to a reduced incidence of severe ocular burns.
Resumo:
When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the subject is gently heated by placing the feet and calves in a commercially available foot warming pouch or immersing the feet and calves in warm water and wrapping the subject in blankets. Skin blood flow is estimated from measurements of skin temperature in the fingers. Normally skin temperature of the fingers is 65-75 degrees F in cool conditions (environmental temperature: 59-68 degrees F) and rises to 85-95 degrees F during body heating. Deviations in this pattern may mean that there is abnormal sympathetic vasoconstrictor control of skin blood flow. Abnormal skin blood flow can substantially impair an individual's ability to thermoregulate and has important clinical implications. During whole body heating, the skin temperature from three different skin sites is monitored and oral temperature is monitored as an index of core temperature. Students determine the fingertip temperature at which the reflex release of sympathetic activity occurs and its maximal attainment, which reflects the vasodilating capacity of this cutaneous vascular bed. Students should interpret typical sample data for certain clinical conditions (Raynaud's disease, peripheral vascular disease, and postsympathectomy) and explain why there may be altered skin blood flow in these disorders.
Resumo:
This opportune case study describes visual and stepping behaviours of an 87 year old female (P8), both prior to, and following two falls. Before falling, when asked to walk along a path containing two stepping guides positioned before and after an obstacle, P8 generally visually fixated the first stepping guide until after foot contact inside it. However, after falling P8 consistently looked away from the stepping guide before completing the step into it in order to fixate the upcoming obstacle in her path. The timing of gaze redirection away from the target (in relation to foot contact inside it) correlated with absolute stepping error. No differences in eyesight, cognitive function, or balance were found between pre- and post-fall recordings. However, P8 did report large increases in fall-related anxiety and reduced balance confidence, supporting previously suggested links between anxiety/increased fear or falling and maladaptive visual/stepping behaviours. The results represent a novel insight into how psychological and related behavioural factors can change in older adults following a fall, and provide a possible partial rationalisation for why recent fallers are more likely to fall again in the following 12 months. These findings highlight novel possibilities for falls prevention and rehabilitation.
Resumo:
Objectives: A common behavioural symptom of Parkinson’s disease (PD) is reduced step length (SL). Whilst sensory cueing strategies can be effective in increasing SL and reducing gait variability, current cueing strategies conveying spatial or temporal information are generally confined to the use of either visual or auditory cue modalities, respectively. We describe a novel cueing strategy using ecologically-valid ‘action-related’ sounds (footsteps on gravel) that convey both spatial and temporal parameters of a specific action within a single cue.
Methods: The current study used a real-time imitation task to examine whether PD affects the ability to re-enact changes in spatial characteristics of stepping actions, based solely on auditory information. In a second experimental session, these procedures were repeated using synthesized sounds derived from recordings of the kinetic interactions between the foot and walking surface. A third experimental session examined whether adaptations observed when participants walked to action-sounds were preserved when participants imagined either real recorded or synthesized sounds.
Results: Whilst healthy control participants were able to re-enact significant changes in SL in all cue conditions, these adaptations, in conjunction with reduced variability of SL were only observed in the PD group when walking to, or imagining the recorded sounds.
Conclusions: The findings show that while recordings of stepping sounds convey action information to allow PD patients to re-enact and imagine spatial characteristics of gait, synthesis of sounds purely from gait kinetics is insufficient to evoke similar changes in behaviour, perhaps indicating that PD patients have a higher threshold to cue sensorimotor resonant responses.
Resumo:
Radiation of dramatically disparate forms among the phylum Mollusca remains a key question in metazoan evolution, and requires careful evaluation of homology of hard parts throughout the deep fossil record. Enigmatic early Cambrian taxa such as Halkieria and Wiwaxia (in the clade Halwaxiida) have been proposed to represent stem-group aculiferan molluscs (Caudofoveata+Solenogastres+Polyplacophora), as complex scleritomes were considered to be unique to aculiferans among extant molluscs. The 'scaly-foot gastropod' (Neomphalina: Peltospiridae) from hydrothermal vents of the Indian Ocean, however, also carries dermal sclerites and thus challenges this inferred homology. Despite superficial similarities to various mollusc sclerites, the scaly-foot gastropod sclerites are secreted in layers covering outpockets of epithelium and are largely proteinaceous, while chiton (Polyplacophora: Chitonida) sclerites are secreted to fill an invaginated cuticular chamber and are largely calcareous. Marked differences in the underlying epithelium of the scaly-foot gastropod sclerites and operculum suggest that the sclerites do not originate from multiplication of the operculum. This convergence in different classes highlights the ability of molluscs to adapt mineralized dermal structures, as supported by the extensive early fossil record of molluscs with scleritomes. Sclerites of halwaxiids are morphologically variable, undermining the assumed affinity of specific taxa with chitons, or the larger putative clade Aculifera. Comparisons with independently derived similar structures in living molluscs are essential for determining homology among fossils and their position with respect to the enigmatic evolution of molluscan shell forms in deep time.
Resumo:
Ellerman Bombs (EBs) are thought to arise as a result of photospheric magnetic reconnection. We use data from the Swedish 1-m Solar Telescope(SST), to study EB events on the solar disk and at the limb. Both datasets show that EBs are connected to the foot-points of forming chromospheric jets. The limb observations show that a bright structure in the H$\alpha$ blue wing connects to the EB initially fuelling it,leading to the ejection of material upwards. The material moves along a loop structure where a newly formed jet is subsequently observed in the red wing of H$\alpha$. In the disk dataset, an EB initiates a jet which propagates away from the apparent reconnection site within the EB flame.The EB then splits into two, with associated brightenings in the inter-granular lanes (IGLs). Micro-jets are then observed, extending to500 km with a lifetime of a few minutes. Observed velocities of themicro-jets are approximately 5-10 km s$^{-1}$, while their chromospheric counterparts range from 50-80 km s$^{-1}$. MURaM simulations of quiet Sun reconnection show that micro-jets with similar properties to that of the observations follow the line of reconnection in the photosphere,with associated H$\alpha$ brightening at the location of increased temperature.
Resumo:
Older adults use a different muscle strategy to cope with postural instability, in which they ‘co-contract’ the muscles around the ankle joint. It has been suggested that this is a compensatory response to age-related proprioceptive decline however this view has never been assessed directly. The current study investigated the association between proprioceptive acuity and muscle co-contraction in older adults. We compared muscle activity, by recording surface EMG from the bilateral tibalis anterior and gastrocnemius medialis muscles, in young (aged 18-34) and older adults (aged 65-82) during postural assessment on a fixed and sway-referenced surface at age-equivalent levels of sway. We performed correlations between muscle activity and proprioceptive acuity, which was assessed using an active contralateral matching task. Despite successfully inducing similar levels of sway in the two age groups, older adults still showed higher muscle co-contraction. A stepwise regression analysis showed that proprioceptive acuity measured using variable error was the best predictor of muscle co-contraction in older adults. However, despite suggestions from previous research, proprioceptive error and muscle co-contraction were negatively correlated in older adults, suggesting that better proprioceptive acuity predicts more co-contraction. Overall, these results suggest that although muscle co-contraction may be an age-specific strategy used by older adults, it is not to compensate for age-related proprioceptive deficits.