48 resultados para Ambient temperature


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm−1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm−2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel, colorimetric, temperature-activated humidity indicator is presented, with a colour change based on the semi-reversible aggregation of thiazine dyes (esp. methylene blue, MB) encapsulated within the polymer, hydroxypropyl cellulose (HPC). The initially purple MB/HPC film is activated by heat treatment at 370 °C for 4 s, at which point the film (with a colour associated with a highly aggregated form of MB; λmax = 530 nm) becomes blue (indicating the presence of monomeric and dimeric MB; i.e. with λmax = 665; 605 nm respectively). The blue, heat-treated MB/HPC films respond to an ambient environment with a relative humidity (RH) exceeding 70% at 21 °C within seconds, returning to their initial purple colour. This colour change is irreversible until the film is heat-treated once more. When exposed to a lower RH of up to ca. 47%, the film is stable in its blue form. In contrast, a MB/HPC film treated only at 220 °C for 15 s also turns a blue colour and responds in the same way to a RH value of ca. 70%, but it is unstable at moderate RH 37-50% values, so that it gradually returns to its purple form over a period of approximately 6 hours. The possible use of the high heat-treated MB/HPC humidity indicator in the packaging of goods that cannot tolerate high RH, such as dry foods and electronics, is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions.