59 resultados para Agent-based model
Resumo:
The mechanism whereby foundation loading is transmitted through the column has received little attention from researchers. This paper reports on some interesting findings obtained from a laboratory-based model study in respect of this issue. The model tests were carried out on samples of soft clay, 300 mm in diameter and 400 mm high. The samples were reinforced with fully penetrating stone columns, of three different diameters, made of crushed basalt. Four pressure cells were located along each stone column. The 60 mm diameter footing used in the model was supported on a clay bed reinforced with a stone column and subjected to foundation loading under drained conditions. The results show that the dissipation of excess pore water pressure developed during the initial application of total stresses, when the foundation was subjected to no loading, generated considerable stresses within the column, and that this was directly attributable to the development of negative skin friction. The pressure distributions in the column during foundation loading showed some complex behaviour.
Resumo:
A Monte-Carlo simulation-based model has been constructed to assess a public health scheme involving mobile-volunteer cardiac First-Responders. The scheme being assessed aims to improve survival of Sudden-Cardiac-Arrest (SCA) patients, through reducing the time until administration of life-saving defibrillation treatment, with volunteers being paged to respond to possible SCA incidents alongside the Emergency Medical Services. The need for a model, for example, to assess the impact of the scheme in different geographical regions, was apparent upon collection of observational trial data (given it exhibited stochastic and spatial complexities). The simulation-based model developed has been validated and then used to assess the scheme's benefits in an alternative rural region (not a part of the original trial). These illustrative results conclude that the scheme may not be the most efficient use of National Health Service resources in this geographical region, thus demonstrating the importance and usefulness of simulation modelling in aiding decision making.
Resumo:
This paper introduces the discrete choice model-paradigm of Random Regret Minimisation (RRM) to the field of health economics. The RRM is a regret-based model that explores a driver of choice different from the traditional utility-based Random Utility Maximisation (RUM). The RRM approach is based on the idea that, when choosing, individuals aim to minimise their regret–regret being defined as what one experiences when a non-chosen alternative in a choice set performs better than a chosen one in relation to one or more attributes. Analysing data from a discrete choice experiment on diet, physical activity and risk of a fatal heart attack in the next ten years administered to a sample of the Northern Ireland population, we find that the combined use of RUM and RRM models offer additional information, providing useful behavioural insights for better informed policy appraisal.
Resumo:
Many cardiovascular diseases are characterised by the restriction of blood flow through arteries. Stents can be expanded within arteries to remove such restrictions; however, tissue in-growth into the stent can lead to restenosis. In order to predict the long-term efficacy of stenting, a mechanobiological model of the arterial tissue reaction to stress is required. In this study, a computational model of arterial tissue response to stenting is applied to three clinically relevant stent designs. We ask the question whether such a mechanobiological model can differentiate between stents used clinically, and we compare these predictions to a purely mechanical analysis. In doing so, we are testing the hypothesis that a mechanobiological model of arterial tissue response to injury could predict the long-term outcomes of stent design. Finite element analysis of the expansion of three different stent types was performed in an idealised, 3D artery. Injury was calculated in the arterial tissue using a remaining-life damage mechanics approach. The inflammatory response to this initial injury was modelled using equations governing variables which represented tissue-degrading species and growth factors. Three levels of inflammation response were modelled to account for inter-patient variability. A lattice-based model of smooth muscle cell behaviour was implemented, treating cells as discrete agents governed by local rules. The simulations predicted differences between stent designs similar to those found in vivo. It showed that the volume of neointima produced could be quantified, providing a quantitative comparison of stents. In contrast, the differences between stents based on stress alone were highly dependent on the choice of comparison criteria. These results show that the choice of stress criteria for stent comparisons is critical. This study shows that mechanobiological modelling may provide a valuable tool in stent design, allowing predictions of their long-term efficacy. The level of inflammation was shown to affect the sensitivity of the model to stent design. If this finding was verified in patients, this could suggest that high-inflammation patients may require alternative treatments to stenting.
Resumo:
A size and trait-based marine community model was used to investigate interactions, with potential implications for yields, when a fishery targeting forage fish species (whose main adult diet is zooplankton) co-occurs with a fishery targeting larger-sized predator species. Predicted effects on the size structure of the fish community, growth and recruitment of fishes, and yield from the fisheries were used to identify management trade-offs among the different fisheries. Results showed that moderate fishing on forage fishes imposed only small effects on predator fisheries, whereas predator fisheries could enhance yield from forage fisheries under some circumstances.
Resumo:
Most studies of conceptual knowledge in the brain focus on a narrow range of concrete conceptual categories, rely on the researchers' intuitions about which object belongs to these categories, and assume a broadly taxonomic organization of knowledge. In this fMRI study, we focus on concepts with a variety of concreteness levels; we use a state of the art lexical resource (WordNet 3.1) as the source for a relatively large number of category distinctions and compare a taxonomic style of organization with a domain-based model (associating concepts with scenarios). Participants mentally simulated situations associated with concepts when cued by text stimuli. Using multivariate pattern analysis, we find evidence that all Taxonomic categories and Domains can be distinguished from fMRI data and also observe a clear concreteness effect: Tools and Locations can be reliably predicted for unseen participants, but less concrete categories (e.g., Attributes, Communications, Events, Social Roles) can only be reliably discriminated within participants. A second concreteness effect relates to the interaction of Domain and Taxonomic category membership: Domain (e.g., relation to Law vs. Music) can be better predicted for less concrete categories. We repeated the analysis within anatomical regions, observing discrimination between all/most categories in the left middle occipital and temporal gyri, and more specialized discrimination for concrete categories Tool and Location in the left precentral and fusiform gyri, respectively. Highly concrete/abstract Taxonomic categories and Domain were segregated in frontal regions. We conclude that both Taxonomic and Domain class distinctions are relevant for interpreting neural structuring of concrete and abstract concepts.
Resumo:
AgentSpeak is a logic-based programming language, based on the Belief-Desire-Intention (BDI) paradigm, suitable for building complex agent-based systems. To limit the computational complexity, agents in AgentSpeak rely on a plan library to reduce the planning problem to the much simpler problem of plan selection. However, such a plan library is often inadequate when an agent is situated in an uncertain environment. In this paper, we propose the AgentSpeak+ framework, which extends AgentSpeak with a mechanism for probabilistic planning. The beliefs of an AgentSpeak+ agent are represented using epistemic states to allow an agent to reason about its uncertain observations and the uncertain effects of its actions. Each epistemic state consists of a POMDP, used to encode the agent’s knowledge of the environment, and its associated probability distribution (or belief state). In addition, the POMDP is used to select the optimal actions for achieving a given goal, even when facing uncertainty.
Resumo:
Revising its beliefs when receiving new information is an important ability of any intelligent system. However, in realistic settings the new input is not always certain. A compelling way of dealing with uncertain input in an agent-based setting is to treat it as unreliable input, which may strengthen or weaken the beliefs of the agent. Recent work focused on the postulates associated with this form of belief change and on finding semantical operators that satisfy these postulates. In this paper we propose a new syntactic approach for this form of belief change and show that it agrees with the semantical definition. This makes it feasible to develop complex agent systems capable of efficiently dealing with unreliable input in a semantically meaningful way. Additionally, we show that imposing restrictions on the input and the beliefs that are entailed allows us to devise a tractable approach suitable for resource-bounded agents or agents where reactiveness is of paramount importance.
Resumo:
Background: Over one billion children are exposed worldwide to political violence and armed conflict. Currently, conclusions about bases for adjustment problems are qualified by limited longitudinal research from a process-oriented, social-ecological perspective. In this study, we examined a theoretically-based model for the impact of multiple levels of the social ecology (family, community) on adolescent delinquency. Specifically, this study explored the impact of children’s emotional insecurity about both the family and community on youth delinquency in Northern Ireland. Methods: In the context of a five-wave longitudinal research design, participants included 999 mother-child dyads in Belfast (482 boys, 517 girls), drawn from socially-deprived, ethnically-homogenous areas that had experienced political violence. Youth ranged in age from 10 to 20 and were 12.18 (SD = 1.82) years old on average at Time 1. Findings: The longitudinal analyses were conducted in hierarchical linear modeling (HLM), allowing for the modeling of inter-individual differences in intra-individual change. Intra-individual trajectories of emotional insecurity about the family related to children’s delinquency. Greater insecurity about the community worsened the impact of family conflict on youth’s insecurity about the family, consistent with the notion that youth’s insecurity about the community sensitizes them to exposure to family conflict in the home. Conclusions: The results suggest that ameliorating children’s insecurity about family and community in contexts of political violence is an important goal toward improving adolescents’ well-being, including reduced risk for delinquency.
Resumo:
AgentSpeak is a logic-based programming language, based on the Belief-Desire-Intention (BDI) paradigm, suitable for building complex agent-based systems. To limit the computational complexity, agents in AgentSpeak rely on a plan library to reduce the planning problem to the much simpler problem of plan selection. However, such a plan library is often inadequate when an agent is situated in an uncertain environment. In this paper, we propose the AgentSpeak+ framework, which extends AgentSpeak with a mechanism for probabilistic planning. The beliefs of an AgentSpeak+ agent are represented using epistemic states to allow an agent to reason about its uncertain observations and the uncertain effects of its actions. Each epistemic state consists of a POMDP, used to encode the agent’s knowledge of the environment, and its associated probability distribution (or belief state). In addition, the POMDP is used to select the optimal actions for achieving a given goal, even when facing uncertainty.
Resumo:
The formation rate of university spin-out firms has increased markedly over the past decade. While this is seen as an important channel for the commercialisation of academic research, concerns have centred around high failure rates and no-to-low growth among those which survive compared to other new technology based firms. Universities have responded to this by investing in incubators to assist spin-outs to overcome their liability of newness. Yet how effective are incubators in supporting these firms? Here we examine this in terms of the structural networks that spin-out firms form, the role of the incubator in this and the effect of this on the spin-out process.
Resumo:
The need for fast response demand side participation (DSP) has never been greater due to increased wind power penetration. White domestic goods suppliers are currently developing a `smart' chip for a range of domestic appliances (e.g. refrigeration units, tumble dryers and storage heaters) to support the home as a DSP unit in future power systems. This paper presents an aggregated population-based model of a single compressor fridge-freezer. Two scenarios (i.e. energy efficiency class and size) for valley filling and peak shaving are examined to quantify and value DSP savings in 2020. The analysis shows potential peak reductions of 40 MW to 55 MW are achievable in the Single wholesale Electricity Market of Ireland (i.e. the test system), and valley demand increases of up to 30 MW. The study also shows the importance of the control strategy start time and the staggering of the devices to obtain the desired filling or shaving effect.
Resumo:
Accurately encoding the duration and temporal order of events is essential for survival and important to everyday activities, from holding conversations to driving in fast flowing traffic. Although there is a growing body of evidence that the timing of brief events (< 1s) is encoded by modality-specific mechanisms, it is not clear how such mechanisms register event duration. One approach gaining traction is a channel-based model; this envisages narrowly-tuned, overlapping timing mechanisms that respond preferentially to different durations. The channel-based model predicts that adapting to a given event duration will result in overestimating and underestimating the duration of longer and shorter events, respectively. We tested the model by having observers judge the duration of a brief (600ms) visual test stimulus following adaptation to longer (860ms) and shorter (340ms) stimulus durations. The channel-based model predicts perceived duration compression of the test stimulus in the former condition and perceived duration expansion in the latter condition. Duration compression occurred in both conditions, suggesting that the channel-based model does not adequately account for perceived duration of visual events.
Resumo:
This Integration Insight provides a brief overview of the most popular modelling techniques used to analyse complex real-world problems, as well as some less popular but highly relevant techniques. The modelling methods are divided into three categories, with each encompassing a number of methods, as follows: 1) Qualitative Aggregate Models (Soft Systems Methodology, Concept Maps and Mind Mapping, Scenario Planning, Causal (Loop) Diagrams), 2) Quantitative Aggregate Models (Function fitting and Regression, Bayesian Nets, System of differential equations / Dynamical systems, System Dynamics, Evolutionary Algorithms) and 3) Individual Oriented Models (Cellular Automata, Microsimulation, Agent Based Models, Discrete Event Simulation, Social Network
Analysis). Each technique is broadly described with example uses, key attributes and reference material.