53 resultados para Advanved very high resolution radiometer (AVHRR)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ten medieval permanent teeth were subjected to incremental dentine sectioning and stable isotope analysis to investigate dietary changes in high resolution. In addition to this, eight increments were also selected for 14C measurements to examine possible intra-individual age differences. Results reveal the cessation of weaning, various dietary profiles and in some cases significantly different 14C ages obtained from a single tooth. This case study illustrates how 14C measurements can function as a proxy alongside the commonly used carbon and nitrogen stable isotope values to interpret the diet of past individuals

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the importance of gelatinous zooplankton as components of marine ecosystems, both ecologically and socio-economically, relatively little is known about population persistence or connectivity in jellyfish. In the present study, we employed a combination of nuclear microsatellite markers and sequence data from the mitochondrial cytochrome oxidase I (COI) gene to determine levels and patterns of population genetic structuring in the holoplanktonic jellyfish Pelagia noctiluca across the northeast Atlantic Ocean and Mediterranean Sea. Our results indicate a high degree of connectivity in P. noctiluca, with little evidence of geographical structuring of genetic variation. A small but significant differentiation of Atlantic Ocean and Mediterranean stocks was detected based on the microsatellite data, but no evidence of differentiation was observed with the mtDNA, probably due to the higher power of the microsatellites to detect low levels of genetic structuring. Two clearly distinct groups of genotypes were observed within the mtDNA COI, which probably diverged in the early Pleistocene, but with no evidence of geographical structuring. Palaeodistribution modelling of P. noctiluca at the Last Glacial Maximum (LGM; ca. 21 KYA) indicated large areas of suitable habitat south of the species’ current-day distribution, with little reduction in area. The congruent evidence for minimal genetic differentiation from the nuclear microsatellites and the mtDNA, coupled with the results of the palaeodistribution modelling, supports the idea of long-term population stability and connectivity, thus providing key insights into the population dynamics and demography of this important species

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we review the recent progress made in the detection, examination, characterisation and interpretation of oscillations manifesting in small-scale magnetic elements in the solar photosphere. This region of the Sun's atmosphere is especially dynamic, and importantly, permeated with an abundance of magnetic field concentrations. Such magnetic features can span diameters of hundreds to many tens of thousands of km, and are thus commonly referred to as the `building blocks' of the magnetic solar atmosphere. However, it is the smallest magnetic elements that have risen to the forefront of solar physics research in recent years. Structures, which include magnetic bright points, are often at the diffraction limit of even the largest of solar telescopes. Importantly, it is the improvements in facilities, instrumentation, imaging techniques and processing algorithms during recent years that have allowed researchers to examine the motions, dynamics and evolution of such features on the smallest spatial and temporal scales to date. It is clear that while these structures may demonstrate significant magnetic field strengths, their small sizes make them prone to the buffeting supplied by the ubiquitous surrounding convective plasma motions. Here, it is believed that magnetohydrodynamic waves can be induced, which propagate along the field lines, carrying energy upwards to the outermost extremities of the solar corona. Such wave phenomena can exist in a variety of guises, including fast and slow magneto-acoustic modes, in addition to Alfven waves. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate how wave motion is generated in the solar photosphere, which oscillatory modes are most prevalent, and the role that these waves play in supplying energy to various layers of the solar atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter reviews the recent observations of waves and oscillations manifesting in fine-scale magnetic structures in the solar photosphere, which are often interpreted as the "building blocks' of the magnetic Sun. The authors found, through phase relationships between the various waveforms, that small-scale magnetic bright points (MBPs) in the photosphere demonstrated signatures of specific magnetoacoustic waves, in particular the sausage and kink modes. Modern magnetohydrodynamic (MHD) simulations of the lower solar atmosphere clearly show how torsional motions can easily be induced in magnetic elements in the photosphere through the processes of vortical motions and/or buffeting by neighboring granules. The authors detected significant power associated with high-frequency horizontal motions, and suggested that these cases may be especially important in the creation of a turbulent environment that efficiently promotes Alfvén wave dissipation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution photoionization measurements of Xe + ions have been performed at the Advanced Light Source in Berkeley, California, USA. The experimental cross sections are compared with results from Dirac-Coulomb R-matrix calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Huntington's disease (HD) is a fatal autosomal-dominant neurodegenerative disorder that affects approximately 3-10 people per 100 000 in the Western world. The median age of onset is 40 years, with death typically following 15-20 years later. In this study, we biochemically profiled post-mortem frontal lobe and striatum from HD sufferers (n = 14) and compared their profiles with controls (n = 14). LC-LTQ-Orbitrap-MS detected a total of 5579 and 5880 features for frontal lobe and striatum, respectively. An ROC curve combining two spectral features from frontal lobe had an AUC value of 0.916 (0.794 to 1.000) and following statistical cross-validation had an 83% predictive accuracy for HD. Similarly, two striatum biomarkers gave an ROC AUC of 0.935 (0.806 to 1.000) and after statistical cross-validation predicted HD with 91.8% accuracy. A range of metabolite disturbances were evident including but-2-enoic acid and uric acid, which were altered in both frontal lobe and striatum. A total of seven biochemical pathways (three in frontal lobe and four in striatum) were significantly altered as a result of HD. This study highlights the utility of high-resolution metabolomics for the study of HD. Further characterization of the brain metabolome could lead to the identification of new biomarkers and novel treatment strategies for HD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing tungsten (W) use for industrial and military applications has resulted in greater W discharge into natural waters, soils and sediments. Risk modeling of W transport and fate in the environment relies on measurement of the release/mobilization flux of W in the bulk media and the interfaces between matrix compartments. Diffusive gradients in thin-films (DGT) is a promising passive sampling technique to acquire such information. DGT devices equipped with the newly developed high-resolution binding gels (precipitated zirconia, PZ, or ferrihydrite, PF, gels) or classic/conventional ferrihydrite slurry gel were comprehensively assessed for measuring W in waters. FerrihydriteDGT can measure W at various ionic strengths (0.001–0.5 mol L−1 NaNO3) and pH (4–8), while PZDGT can operate across slightly wider environmental conditions. The three DGT configurations gave comparable results for soil W measurement, showing that typically W resupply is relatively poorly sustained. 1D and 2D high-resolution W profiling across sediment—water and hotspot—bulk media interfaces from Lake Taihu were obtained using PZDGT coupled with laser ablation ICP–MS measurement, and the apparent diffusion fluxes across the interfaces were calculated using a numerical model.