68 resultados para ANTERIOR CINGULATE CORTEX
Resumo:
Humans typically make several rapid eye movements (saccades) per second. It is thought that visual working memory can retain and spatially integrate three to four objects or features across each saccade but little is known about this neural mechanism. Previously we showed that transcranial magnetic stimulation (TMS) to the posterior parietal cortex and frontal eye fields degrade trans-saccadic memory of multiple object features (Prime, Vesia, & Crawford, 2008, Journal of Neuroscience, 28(27), 6938-6949; Prime, Vesia, & Crawford, 2010, Cerebral Cortex, 20(4), 759-772.). Here, we used a similar protocol to investigate whether dorsolateral prefrontal cortex (DLPFC), an area involved in spatial working memory, is also involved in trans-saccadic memory. Subjects were required to report changes in stimulus orientation with (saccade task) or without (fixation task) an eye movement in the intervening memory interval. We applied single-pulse TMS to left and right DLPFC during the memory delay, timed at three intervals to arrive approximately 100ms before, 100ms after, or at saccade onset. In the fixation task, left DLPFC TMS produced inconsistent results, whereas right DLPFC TMS disrupted performance at all three intervals (significantly for presaccadic TMS). In contrast, in the saccade task, TMS consistently facilitated performance (significantly for left DLPFC/perisaccadic TMS and right DLPFC/postsaccadic TMS) suggesting a dis-inhibition of trans-saccadic processing. These results are consistent with a neural circuit of trans-saccadic memory that overlaps and interacts with, but is partially separate from the circuit for visual working memory during sustained fixation.
Resumo:
Dental Panoramic Tomography (DPT) is a widely used and valuable examination in dentistry. One area prone to artefacts and therefore misinterpretation is the anterior region of the mandible. This case study discusses a periapical radiolucency related to lower anterior teeth that is discovered to be a radiographic artefact. Possible causes of the artefact include a pronounced depression in the mental region of the mandible or superimposition of intervertebral spaces. Additional limitations of the DPT image include superimposition of radio-opaque structures, reduced image detail compared to intra-oral views and uneven magnification. These problems often make the DPT inappropriate for imaging the anterior mandible.
CLINICAL RELEVANCE: Panoramic radiography is often unsuitable for radiographic examination of the anterior mandible.
Resumo:
Caballeria liewi Lim, 1995, uses adhesive secretions from the head organs and posterior secretory systems to assist in locomotion and attachment. Ultrastructural investigations show that the head organs of C. liewi consist of three pairs of antero-lateral pit-like openings bearing microvilli and ducts leading from two types of uninucleated gland cells (located lateral to the pharynx), one type producing rod-like (S1) bodies with an electron-dense matrix containing less electron-dense vesicles and the second type producing oval (S2) bodies with a homogeneous electron-dense matrix. Interlinking band-like structures are observed between S1 bodies and between S2 bodies. S1 body is synthesised in the granular endoplasmic reticulum, transported to a Golgi complex to be packaged into vesicles and routed into ducts for exudation. The synthesis of the S2 body is unresolved. Haptoral secretions manifested externally as net-like structures are derived from dual electron-dense (DED) secretory body produced in the peduncular gland cells. The DED body consists of a less electron-dense oval core in a homogeneous electron-dense matrix. On exocytosis into the pyriform haptoral reservoir, DED bodies are transformed into a secretion with two types of inclusions (less electron-dense oval and electron-dense spherical inclusions) in an electron-dense matrix. The secretions are further transformed (as small, oval, electron-dense bodies) when transported to the superficial anchor grooves, and on exudation into the gill tissues, the secretions become an electron-dense matrix. Secretory bodies associated with uniciliated structures, anchor sleeves and marginal hooks are also observed.
Resumo:
The brain derived neurotrophic factor (BDNF) Val66Met polymorphism and stimulation duration are thought to play an important role in modulating motor cortex plasticity induced by non-invasive brain stimulation (NBS). In the present study we sought to determine whether these factors interact or exert independent effects in older adults. Fifty-four healthy older adults (mean age = 66.85 years) underwent two counterbalanced sessions of 1.5 mA anodal transcranial direct current stimulation (atDCS), applied over left M1 for either 10 or 20 min. Single pulse transcranial magnetic stimulation (TMS) was used to assess corticospinal excitability (CSE) before and every 5 min for 30 min following atDCS. On a group level, there was an interaction between stimulation duration and BDNF genotype, with Met carriers (n = 13) showing greater post-intervention potentiation of CSE compared to Val66Val homozygotes homozygotes (n = 37) following 20 min (p = 0.002) but not 10 min (p = 0.219) of stimulation. Moreover, Met carriers, but not Val/Val homozygotes, exhibited larger responses to TMS (p = 0.046) after 20 min atDCS, than following 10 min atDCS. On an individual level, two-step cluster analysis revealed a considerable degree of inter-individual variability, with under half of the total sample (42%) showing the expected potentiation of CSE in response to atDCS across both sessions. Intra-individual variability in response to different durations of atDCS was also apparent, with one-third of the total sample (34%) exhibiting LTP-like effects in one session but LTD-like effects in the other session. Both the inter-individual (p = 0.027) and intra-individual (p = 0.04) variability was associated with BDNF genotype. In older adults, the BDNF Val66Met polymorphism along with stimulation duration appears to play a role in modulating tDCS-induced motor cortex plasticity. The results may have implications for the design of NBS protocols for healthy and diseased aged populations.
Resumo:
Early visual cortex (EVC) participates in visual feature memory and the updating of remembered locations across saccades, but its role in the trans-saccadic integration of object features is unknown. We hypothesized that if EVC is involved in updating object features relative to gaze, feature memory should be disrupted when saccades remap an object representation into a simultaneously perturbed EVC site. To test this, we applied transcranial magnetic stimulation (TMS) over functional magnetic resonance imaging-localized EVC clusters corresponding to the bottom left/right visual quadrants (VQs). During experiments, these VQs were probed psychophysically by briefly presenting a central object (Gabor patch) while subjects fixated gaze to the right or left (and above). After a short memory interval, participants were required to detect the relative change in orientation of a re-presented test object at the same spatial location. Participants either sustained fixation during the memory interval (fixation task) or made a horizontal saccade that either maintained or reversed the VQ of the object (saccade task). Three TMS pulses (coinciding with the pre-, peri-, and postsaccade intervals) were applied to the left or right EVC. This had no effect when (a) fixation was maintained, (b) saccades kept the object in the same VQ, or (c) the EVC quadrant corresponding to the first object was stimulated. However, as predicted, TMS reduced performance when saccades (especially larger saccades) crossed the remembered object location and brought it into the VQ corresponding to the TMS site. This suppression effect was statistically significant for leftward saccades and followed a weaker trend for rightward saccades. These causal results are consistent with the idea that EVC is involved in the gaze-centered updating of object features for trans-saccadic memory and perception.
Resumo:
The ease with which we avoid falling down belies a highly sophisticated and distributed neural network for controlling reactions to maintain upright balance. Although historically these reactions were considered within the sub cortical domain, mounting evidence reveals a distributed network for postural control including a potentially important role for the cerebral cortex. Support for this cortical role comes from direct measurement associated with moments of induced instability as well as indirect links between cognitive task performance and balance recovery. The cerebral cortex appears to be directly involved in the control of rapid balance reactions but also setting the central nervous system in advance to optimize balance recovery reactions even when a future threat to stability is unexpected. In this review the growing body of evidence that now firmly supports a cortical role in the postural responses to externally induced perturbations is presented. Moreover, an updated framework is advanced to help understand how cortical contributions may influence our resistance to falls and on what timescale. The implications for future studies into the neural control of balance are discussed.
Resumo:
We explored the brain's ability to quickly prevent a pre-potent but unwanted motor response. To address this, transcranial magnetic stimulation was delivered over the motor cortex (hand representation) to probe excitability changes immediately after somatosensory cues prompted subjects to either move as fast as possible or withhold movement. Our results showed a difference in motor cortical excitability 90 ms post-stimulus contingent on cues to either promote or prevent movement. We suggest that our study design emphasizing response speed coupled with well-defined early probes allowed us to extend upon similar past investigations into the timing of response inhibition.
Resumo:
Purpose: To describe sequential phacoemulsification-intraocular lens (IOL) implantation-posterior capsulorhexis-anterior vitrectomy in the management of phakic malignant glaucoma. Methods: Twenty consecutive patients (25 eyes) with phakic malignant glaucoma were enrolled at the Zhongshan Ophthalmic Center, Sun Yat-sen University. All patients underwent phacoemulsification, IOL implantation and posterior capsulorhexis together with anterior vitrectomy via a clear corneal paracentesis. Visual acuity, intraocular pressure (IOP), anterior chamber depth (ACD), surgical complications and medications required after the surgery were recorded. Results: After surgery, the mean LogMAR visual acuity and ACD increased significantly (visual acuity from -1.56 ± 1.17 to -0.54 ± 0.81, p < 0.001; ACD from 0.367 ± 0.397 mm to 2.390 ± 0.575 mm, p < 0.001), and mean IOP decreased significantly (from 39.6 ± 10.6 mm Hg to 14.5 ± 4.1 mmHg, p < 0.001). No serious perioperative complications occurred, and only five eyes required topical glaucoma medications after surgery. Conclusion: Combined phacoemulsification-IOL implantation-posterior capsulorhexis-anterior vitrectomy surgery is a safe and effective method for treating patients with phakic malignant glaucoma. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.
Resumo:
Objective: To study the population distribution and longitudinal changes in anterior chamber angle width and its determinants among Chinese adults. Design: Prospective cohort, population-based study. Participants: Persons aged 35 years or more residing in Guangzhou, China, who had not previously undergone incisional or laser eye surgery. Methods: In December 2008 and December 2010, all subjects underwent automated keratometry, and a random 50% sample had anterior segment optical coherence tomography with measurement of angle-opening distance at 500 μm (AOD500), angle recess area (ARA), iris thickness at 750 μm (IT750), iris curvature, pupil diameter, corneal thickness, anterior chamber width (ACW), lens vault (LV), and lens thickness (LT) and measurement of axial length (AL) and anterior chamber depth (ACD) by partial coherence laser interferometry. Main Outcome Measures: Baseline and 2-year change in AOD500 and ARA in the right eye. Results: A total of 745 subjects were present for full biometric testing in both 2008 and 2010 (mean age at baseline, 52.2 years; standard deviation [SD], 11.5 years; 53.7% were female). Test completion rates in 2010 varied from 77.3% (AOD500: 576/745) to 100% (AL). Mean AOD500 decreased from 0.25 mm (SD, 0.13 mm) in 2008 to 0.21 mm (SD, 13 mm) in 2010 (difference, -0.04; 95% confidence interval [CI], -0.05 to -0.03). The ARA decreased from 21.5±3.73 10-2 mm2 to 21.0±3.64 10 -2 mm2 (difference, -0.46; 95% CI, -0.52 to -0.41). The decrease in both was most pronounced among younger subjects and those with baseline AOD500 in the widest quartile at baseline. The following baseline variables were significantly associated with a greater 2-year decrease in both AOD500 and ARA: deeper ACD, steeper iris curvature, smaller LV, greater ARA, and greater AOD500. By using simple regression models, we could explain 52% to 58% and 93% of variation in baseline AOD500 and ARA, respectively, but only 27% and 16% of variation in 2-year change in AOD500 and ARA, respectively. Conclusions: Younger persons and those with the least crowded anterior chambers at baseline have the largest 2-year decreases in AOD500 and ARA. The ability to predict change in angle width based on demographic and biometric factors is relatively poor, which may have implications for screening. Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed in this article. © 2012 American Academy of Ophthalmology.