116 resultados para ANAEROBIC-BACTERIA
Resumo:
Variation in the natural abundance stable carbon isotope composition of respired CO2 and biomass has been measured for two types of aerobic bacteria found in contaminated land sites. Pseudomonas putida strain NCIMB 10015 was cultured on phenol and benzoate and Rhodococcus sp. I-1 was cultured on phenol. Results indicate that aerobic isotope fractionations of differing magnitudes occur during aerobic biodegradation of these substrates with an isotopic depletion in the CO2 (Delta(13)C(phenol-CO2)) as much as 3.7 parts per thousand and 5.6 parts per thousand for Pseudomonas putida and Rhodococcus sp. I-1 respectively. This observation has significant implications for the use of a stable isotope mass balance approach in monitoring degradation processes that rely on indigenous bacterial populations. The effects of the metabolic pathway utilised in degradation and inter-species variation on the magnitude of isotope fractionation are discussed. Possible explanations for the observed isotope fractionation include differences in the metabolic pathways utilised by the organisms and differences in specific growth rates and physiology. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The biotransformation of the polycyclic aromatic hydrocarbons (PAHs) naphthalene and phenanthrene was investigated by using two dioxygenase-expressing bacteria, Pseudomonas sp. strain 9816/11 and Sphingomonas yanoikuyae B8/36, under conditions which facilitate mass-transfer limited substrate oxidation. Both of these strains are mutants that accumulate cis-dihydrodiol metabolites under the reaction conditions used. The effects of the nonpolar solvent 2,2,4,4,6,8,8-heptamethylnonane (HMN) and the nonionic surfactant Triton X-100 on the rate of accumulation of these metabolites were determined. HMN increased the rate of accumulation of metabolites for both microorganisms, with both substrates. The enhancement effect was most noticeable with phenanthrene, which has a lower aqueous solubility than naphthalene. Triton X-100 increased the rate of oxidation of the PAHs with strain 9816/11 with the effect being most noticeable when phenanthrene was used as a substrate. However, the surfactant inhibited the biotransformation of both naphthalene and phenanthrene with strain B8/36 under the same conditions. The observation that a nonionic surfactant could have such contrasting effects on PAH oxidation by different bacteria, which are known to be important for the degradation of these compounds in the environment, may explain why previous research on the application of the surfactants to PAH bioremediation has yielded inconclusive results. The surfactant inhibited growth of the wild-type strain S. yanoikuyae B1 on aromatic compounds but did not inhibit B8/36 dioxygenase enzyme activity in vitro.
Resumo:
Antibodies are are very important materials for diagnostics. A rapid and simple hybridoma screening method will help in delivering specific monoclonal antibodies. In this study, we systematically developed the first antibody array to screen for bacteria-specific monoclonal antibodies using Listeria monocytogenes as a bacteria model. The antibody array was developed to expedite the hybridoma screening process by printing hybridoma supernatants on a glass slide coated with an antigen of interest. This screening method is based on the binding ability of supernatants to the coated antigen. The bound supernatants were detected by a fluorescently labeled anti-mouse immunoglobulin. Conditions (slide types, coating, spotting, and blocking buffers) for antibody array construction were optimized. To demonstrate its usefulness, antibody array was used to screen a sample set of 96 hybridoma supernatants in comparison to ELISA. Most of the positive results identified by ELISA and antibody array methods were in agreement except for those with low signals that were undetectable by antibody array. Hybridoma supernatants were further characterized with surface plasmon resonance to obtain additional data on the characteristics of each selected clone. While the antibody array was slightly less sensitive than ELISA, a much faster and lower cost procedure to screen clones against multiple antigens has been demonstrated. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Burkholderia cenocepacia is a multidrug-resistant opportunistic pathogen that infects the airways of patients with cystic fibrosis (CF) and can survive intracellularly in macrophages and epithelial cells. The gentamicin protection assay, which relies on the poor ability of gentamicin or other aminoglycosides to permeate eukaryotic cell membranes, is traditionally employed to quantify intracellular bacteria. However, the high resistance of these bacteria to aminoglycosides hampers the use of the gentamicin protection assay to investigate intracellular infection by B. cenocepacia. Here, we report the construction of gentamicin-sensitive strains of B. cenocepacia carrying a deletion of the BCAL1674, BCAL1675, and BCAL1676 genes that form an operon encoding an AmrAB-OprA-like efflux pump. We show that bacteria carrying this deletion are hypersensitive to gentamicin and also delay phagolysosomal fusion upon infection of RAW 264.7 murine macrophages, as previously demonstrated for the parental strain. We also demonstrate for the first time that low concentrations of gentamicin can be used to effectively kill extracellular bacteria and reliably quantify the intracellular infection by B. cenocepacia, which can replicate in RAW 264.7 macrophages.
Resumo:
Burkholderia cenocepacia is a member of the B. cepacia complex (Bcc), a group of opportunistic bacteria that infect the airways of patients with cystic fibrosis (CF) and are extraordinarily resistant to almost all clinically useful antibiotics. Infections in CF patients with Bcc bacteria generally lead to a more rapid decline in lung function, and in some cases to the 'cepacia syndrome', a virtually deadly exacerbation of the lung infection with systemic manifestations. These characteristics of Bcc bacteria contribute to higher morbidity and mortality in infected CF patients. In the last 10 years considerable progress has been made in understanding the interactions between Bcc bacteria and mammalian host cells. Bcc isolates can survive either intracellularly within eukaryotic cells or extracellularly in host tissues. They survive within phagocytes and respiratory epithelial cells, and they have the ability to breach the respiratory epithelium layer. Survival and persistence of Bcc bacteria within host cells and tissues are believed to play a key role in pulmonary infection and to contribute to the persistent inflammation observed in patients with CF. This review summarizes recent findings concerning the interaction between Bcc bacteria and epithelial and phagocytic cells.
Resumo:
Strains of the Burkholderia cepacia complex (Bcc) are opportunistic bacteria that can cause life-threatening infections in patients with cystic fibrosis and chronic granulomatous disease. Previous work has shown that Bcc isolates can persist in membrane-bound vacuoles within amoeba and macrophages without bacterial replication, but the detailed mechanism of bacterial persistence is unknown. In this study, we have investigated the survival of the Burkholderia cenocepacia strain J2315 within RAW264.7 murine macrophages. Strain J2315 is a prototypic isolate of the widespread and transmissible ET12 clone. Unlike heat-inactivated bacteria, which reach lysosomes shortly after internalization, vacuoles containing live B. cenocepacia J2315 accumulate the late endosome/lysosome marker LAMP-1 and start fusing with lysosomal compartments only after 6 h post internalization. Using fluorescent fluid-phase probes, we also demonstrated that B. cenocepacia-containing vacuoles continued to interact with newly formed endosomes, and maintained a luminal pH of 6.4 +/- 0.12. In contrast, vacuoles containing heat-inactivated bacteria had an average pH of 4.8 +/- 0.03 and rapidly merged with lysosomes. Additional experiments using concanamycin A, a specific inhibitor of the vacuolar H+-ATPase, revealed that vacuoles containing live bacteria did not exclude the H+-ATPase. This mode of bacterial survival did not require type III secretion, as no differences were found between wild type and a type III secretion mutant strain. Collectively, our results suggest that intracellular B. cenocepacia cause a delay in the maturation of the phagosome, which may contribute to facilitate bacterial escape from the microbicidal activities of the host cell.
Resumo:
The lpcA locus has been identified in Escherichia coli K12 novobiocin-supersensitive mutants that produce a short lipopolysaccharide (LPS) core which lacks glyceromannoheptose and terminal hexoses. We have characterized lpcA as a single gene mapping around 5.3 min (246 kilobases) on the E. coli K12 chromosome and encoding a 22.6-kDa cytosolic protein. Recombinant plasmids containing only lpcA restored a complete core LPS in the E. coli strain chi711. We show that this strain has an IS5-mediated chromosomal deletion of 35 kilobases that eliminates lpcA. The LpcA protein showed discrete similarities with a family of aldose/ketose isomerases and other proteins of unknown function. The isomerization of sedoheptulose 7-phosphate, into a phosphosugar presumed to be D-glycero-D-mannoheptose 7-phosphate, was detected in enzyme reactions with cell extracts of E. coli lpcA+ and of lpcA mutants containing the recombinant lpcA gene. We concluded that LpcA is the phosphoheptose isomerase used in the first step of glyceromannoheptose synthesis. We also demonstrated that lpcA is conserved among enteric bacteria, all of which contain glyceromannoheptose in the inner core LPS, indicating that LpcA is an essential component in a conserved biosynthetic pathway of inner core LPS.
Resumo:
Mouse monoclonal antibodies (MAbs) were generated against a 76-kDa IutA receptor of pathogenic avian Escherichia coli 15972. Six of the eight IutA-specific MAbs isolated (AB1 to AB6) were shown to be directed toward membrane-exposed conformational epitopes, although they did not interfere with the uptake of ferric aerobactin and cloacin DF13 as assessed by competition experiments with purified ligands. The two remaining IutA MAbs (AB9 and AB10) recognized linear epitopes buried in the IutA molecule. The panel of IutA MAbs was used to characterize IutA variants occurring in strains of E. coli, Klebsiella pneumoniae, Enterobacter spp., and Shigella spp., resulting in the identification of four immunological groups of IutAs. MAb AB9 defined an epitope conserved in all IutA variants. In addition, the panel of IutA MAbs served to identify the presence of IutA in wild-type bacteria grown in the presence of diphenylamine to reduce the expression of O-specific polysaccharide.
Resumo:
There is a need for new antibiotics or combination of antibiotics that possess activity against increasingly resistant cystic fibrosis (CF) respiratory pathogens such as Pseudomonas aeruginosa and MRSA.
Resumo:
A replica plate screening technique, based on the acid molybdate assay for detection of phosphate has been developed to permit the detection of microorganisms capable of mineralizing organophosphonates. The method was further adapted as the basis of an activity stain for the detection of the carbon - phosphorus bond cleavage enzyme phosphonoacetate hydrolase in PAGE gels.