160 resultados para AGRICULTURAL LANDSCAPE
Resumo:
About 100 million rural people in Asia are exposed to arsenic (As)-polluted drinking water and agricultural products. Total and inorganic arsenic (t-As and i-As) intake mainly depend on the quality of drinking and cooking waters, and amounts of seafood and rice consumed. The main problems occur in countries with poor water quality where the population depends on rice for their diet, and their t-As and i-As intake is high as a result of growing and cooking rice in contaminated water. Workable solutions to remove As from water and breeding rice cultivars with low As accumulation are being sought. In the meantime, simple recommendations for processing and cooking foods will help to reduce As intake. For instance, cooking using high volumes of As-free water may be a cheap way of reducing As exposure in rural populations. It is necessary to consider the effects of cooking and processing on t-As and i-As to obtain a realistic view of the risks associated with intake of As in Asendemic areas.
Resumo:
Upland Scotland contains some of Britain’s most prized areas of natural heritage value. However, although such areas may appear both ‘wild’ and ‘remote’, these are typically working landscapes which symbolise the interdependence of nature and society. The complexity of this relationship means that management responses will need to address a multitude of potentially conflicting priorities whilst at the same time ensuring that sufficient social and institutional capital exists to allow for the promotion of landscape integrity. The introduction of national parks to Scotland in the form of the National Parks (Scotland) Act 2000 allows for a high-level of protection for designated areas in upland Scotland. Yet, whilst the recent Act outlines the statutory purpose and direction national parks should take, it allows a significant degree of flexibility in theway in which the Actmay be implemented. This level of discretion allows for significant local distinctiveness within the model but also raises questions about the potential effectiveness of chosen responses. In order to assess the potential implications of a model rooted in self-determination,we provide a case study review of the institutional basis of the Cairngorms National Park along with an assessment of the strategic character of the first National Park Plan. It is argued that whilst the Cairngorms National Park Authority has developed a significant level of stakeholder engagement, the authority may struggle to bridge the policy-implementation gap. Although a number of shortcomings are identified, particular concerns relate to the potential mismatch between strategic ambition and local level capacity.
Resumo:
Contemporary genetic structure of Atlantic salmon (Salmo salar L.) in the River Moy in Ireland is shown here to be strongly related to landscape features and population demographics, with populations being defined largely by their degree of physical isolation and their size. Samples of juvenile salmon were collected from the 17 major spawning areas on the river Moy and from one spawning area in each of five smaller nearby rivers. No temporal allele frequency differences were observed within locations for 12 microsatellite loci, whereas nearly all spatial samples differed significantly, suggesting that each was a separate population. Bayesian clustering and landscape genetic analyses suggest that these populations can be combined hierarchically into five genetically informative larger groupings. Lakes were found to be the single most important determinant of the observed population structure. Spawning area size was also an important factor. The salmon population of the closest nearby river resembled genetically the largest Moy population grouping. In addition, we showed that anthropogenic influences on spawning habitats, in this case arterial drainage, can affect relationships between populations. Our results show that Atlantic salmon biodiversity can be largely defined by geography, and thus, knowledge of landscape features (for example, as characterized within Geographical Information Systems) has the potential to predict population structure in other rivers without an intensive genetic survey, or at least to help direct sampling. This approach of combining genetics and geography, for sampling and in subsequent statistical analyses, has wider application to the investigation of population structure in other freshwater/anadromous fish species and possibly in marine fish and other organisms.