195 resultados para ACUTE MYELOGENOUS LEUKEMIA


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Microarray Innovations in Leukemia study assessed the clinical utility of gene expression profiling as a single test to subtype leukemias into conventional categories of myeloid and lymphoid malignancies. METHODS: The investigation was performed in 11 laboratories across three continents and included 3,334 patients. An exploratory retrospective stage I study was designed for biomarker discovery and generated whole-genome expression profiles from 2,143 patients with leukemias and myelodysplastic syndromes. The gene expression profiling-based diagnostic accuracy was further validated in a prospective second study stage of an independent cohort of 1,191 patients. RESULTS: On the basis of 2,096 samples, the stage I study achieved 92.2% classification accuracy for all 18 distinct classes investigated (median specificity of 99.7%). In a second cohort of 1,152 prospectively collected patients, a classification scheme reached 95.6% median sensitivity and 99.8% median specificity for 14 standard subtypes of acute leukemia (eight acute lymphoblastic leukemia and six acute myeloid leukemia classes, n = 693). In 29 (57%) of 51 discrepant cases, the microarray results had outperformed routine diagnostic methods. CONCLUSION: Gene expression profiling is a robust technology for the diagnosis of hematologic malignancies with high accuracy. It may complement current diagnostic algorithms and could offer a reliable platform for patients who lack access to today's state-of-the-art diagnostic work-up. Our comprehensive gene expression data set will be submitted to the public domain to foster research focusing on the molecular understanding of leukemias

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The incidence of refractory acute myeloid leukemia (AML) is on the increase due in part to an aging population that fails to respond to traditional therapies. High throughput genomic analysis promises better diagnosis, prognosis and therapeutic intervention based on improved patient stratification. Relevant pre-clinical models are urgently required to advance drug development in this area. The collaborating oncogenes, HOXA9 and MEIS1, are frequently co-overexpressed in cytogenetically normal AML (CN-AML) and a conditional transplantation mouse model was developed that demonstrated oncogene-dependency and expression levels comparable to CN-AML patients. Integration of gene signatures obtained from the mouse model and a cohort of CN-AML patients using statistically significant connectivity Map (sscMap) analysis identified Entinostat as a drug with the potential to alter the leukemic condition towards the normal state. Ex vivo treatment of leukemic cells, but not age-matched normal bone marrow controls, with Entinostat validated the gene signature and resulted in reduced viability in liquid culture, impaired colony formation and loss of the leukemia initiating cell. Furthermore, in vivo treatment with Entinostat resulted in prolonged survival of leukemic mice. This study demonstrates that the HDAC inhibitor Entinostat inhibits disease maintenance and prolongs survival in a clinically relevant murine model of cytogenetically normal AML. © 2013 AlphaMed Press

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Amplicon deep-sequencing using second-generation sequencing technology is an innovative molecular diagnostic technique and enables a highly-sensitive detection of mutations. As an international consortium we had investigated previously the robustness, precision, and reproducibility of 454 amplicon next-generation sequencing (NGS) across 10 laboratories from 8 countries (Leukemia, 2011;25:1840-8).

Aims: In Phase II of the study, we established distinct working groups for various hematological malignancies, i.e. acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), and multiple myeloma. Currently, 27 laboratories from 13 countries are part of this research consortium. In total, 74 gene targets were selected by the working groups and amplicons were developed for a NGS deep-sequencing assay (454 Life Sciences, Branford, CT). A data analysis pipeline was developed to standardize mutation interpretation both for accessing raw data (Roche Amplicon Variant Analyzer, 454 Life Sciences) and variant interpretation (Sequence Pilot, JSI Medical Systems, Kippenheim, Germany).

Results: We will report on the design, standardization, quality control aspects, landscape of mutations, as well as the prognostic and predictive utility of this assay in a cohort of 8,867 cases. Overall, 1,146 primer sequences were designed and tested. In detail, for example in AML, 924 cases had been screened for CEBPA mutations. RUNX1 mutations were analyzed in 1,888 cases applying the deep-sequencing read counts to study the stability of such mutations at relapse and their utility as a biomarker to detect residual disease. Analyses of DNMT3A (n=1,041) were focused to perform landscape investigations and to address the prognostic relevance. Additionally, this working group is focusing on TET2, ASXL1, and TP53 analyses. A novel prognostic model is being developed allowing stratification of AML into prognostic subgroups based on molecular markers only. In ALL, 1,124 pediatric and adult cases have been screened, including 763 assays for TP53 mutations both at diagnosis and relapse of ALL. Pediatric and adult leukemia expert labs developed additional content to study the mutation incidence of other B and T lineage markers such as IKZF1, JAK2, IL7R, PAX5, EP300, LEF1, CRLF2, PHF6, WT1, JAK1, PTEN, AKT1, IL7R, NOTCH1, CREBBP, or FBXW7. Further, the molecular landscape of CLL is changing rapidly. As such, a separate working group focused on analyses including NOTCH1, SF3B1, MYD88, XPO1, FBXW7 and BIRC3. Currently, 922 cases were screened to investigate the range of mutational burden of NOTCH1 mutations for their prognostic relevance. In MDS, RUNX1 mutation analyses were performed in 977 cases. The prognostic relevance of TP53 mutations in MDS was assessed in additional 327 cases, including isolated deletions of chromosome 5q. Next, content was developed targeting genes of the cellular splicing component, e.g. SF3B1, SRSF2, U2AF1, and ZRSR2. In BCR-ABL1-negative MPN, nine genes of interest (JAK2, MPL, TET2, CBL, KRAS, EZH2, IDH1, IDH2, ASXL1) have been analyzed in a cohort of 155 primary myelofibrosis cases searching for novel somatic mutations and addressing their relevance for disease progression and leukemia transformation. Moreover, an assay was developed and applied to CMML cases allowing the simultaneous analysis of 25 leukemia-associated target genes in a single sequencing run using just 20 ng of starting DNA. Finally, nine laboratories are studying CML, applying ultra-deep sequencing of the BCR-ABL1 tyrosine kinase domain. Analyses were performed on 615 cases investigating the dynamics of expansion of mutated clones under various tyrosine kinase inhibitor therapies.

Conclusion: Molecular characterization of hematological malignancies today requires high diagnostic sensitivity and specificity. As part of the IRON-II study, a network of laboratories analyzed a variety of disease entities applying amplicon-based NGS assays. Importantly, the consortium not only standardized assay design for disease-specific panels, but also achieved consensus on a common data analysis pipeline for mutation interpretation. Distinct working groups have been forged to address scientific tasks and in total 8,867 cases had been analyzed thus far.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ninety-one patients were studied serially for chimeric status following allogeneic stem cell transplantation (SCT) for severe aplastic anaemia (SAA) or Fanconi Anaemia (FA). Short tandem repeat polymerase chain reaction (STR-PCR) was used to stratify patients into five groups: (A) complete donor chimeras (n = 39), (B) transient mixed chimeras (n = 15) (C) stable mixed chimeras (n = 18), (D) progressive mixed chimeras (n = 14) (E) recipient chimeras with early graft rejection (n = 5). As serial sampling was not possible in Group E, serial chimerism results for 86 patients were available for analysis. The following factors were analysed for association with chimeric status: age, sex match, donor type, aetiology of aplasia, source of stem cells, number of cells engrafted, conditioning regimen, graft-versus-host disease (GvHD) prophylaxis, occurrence of acute and chronic GvHD and survival. Progressive mixed chimeras (PMCs) were at high risk of late graft rejection (n = 10, P <0.0001). Seven of these patients lost their graft during withdrawal of immunosuppressive therapy. STR-PCR indicated an inverse correlation between detection of recipient cells post-SCT and occurrence of acute GvHD (P = 0.008). PMC was a bad prognostic indicator of survival (P = 0.003). Monitoring of chimeric status during cyclosporin withdrawal may facilitate therapeutic intervention to prevent late graft rejection in patients transplanted for SAA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4. Evaluation of selected β-lactam CA-4 analogs demonstrated potent antitubulin, antiproliferative, and antimitotic effects in human leukemia cells. A lead β-lactam analog, CA-432, displayed comparable antiproliferative activities with CA-4. CA-432 induced rapid apoptosis in HL-60 acute myeloid leukemia cells, which was accompanied by depolymerization of the microtubular network, poly(ADP-ribose) polymerase cleavage, caspase-3 activation, and Bcl-2 cleavage. A prolonged G(2)M cell cycle arrest accompanied by a sustained phosphorylation of mitotic spindle checkpoint protein, BubR1, and the antiapoptotic proteins Bcl-2 and Bcl-x(L) preceded apoptotic events in K562 chronic myeloid leukemia (CML) cells. Molecular docking studies in conjunction with comprehensive cell line data rule out CA-4 and β-lactam derivatives as P-glycoprotein substrates. Furthermore, both CA-4 and CA-432 induced significantly more apoptosis compared with imatinib mesylate in ex vivo samples from patients with CML, including those positive for the T315I mutation displaying resistance to imatinib mesylate and dasatinib. In summary, synthetic intrinsically stable analogs of CA-4 that display significant clinical potential as antileukemic agents have been designed and synthesized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ultraviolet-B (UVB) irradiation is known to inhibit lymphocyte activity and consequently to reduce the incidence of graft-versus-host disease (GVHD) in experimental models for allogeneic bone marrow transplantation (BMT). GVHD is frequently associated with morbidity and mortality, but also with the beneficial graft-versus-leukemia (GVL) effect, demonstrated by a reduction in the incidence of leukemia relapse. In this study, we investigated whether UVB treatment of allogeneic T cells could prevent GVHD while sparing the beneficial GVL effect following allogeneic BMT in the Brown Norway myelocytic leukemia (BNML) rat model analogous to human acute myelocytic leukemia (AML). The dose of UVB required to abolish lethal GVHD in the rat allogeneic BMT model (WAG/Rij donors into BN recipients) was 4000 J/m2. However, this UVB dose simultaneously abrogated all GVL activity mediated by the T cells in the graft, while the radio-protective capacity of rat BM cells was strongly reduced. The number of allogeneic BM cells required to protect lethally irradiated BN rats was increased 50 to 100-fold. It is concluded that UVB acts as a non-selective form of T cell inactivation, and that UVB pretreatment of an allogeneic marrow graft is unlikely to be useful clinically as a preventive measure for GVHD, since other means of reduction of the number of functional T cells are less damaging to bone marrow stem cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CD33 is a member of the sialic acid–binding immunoglobulin-like lectin (Siglec) family of inhibitory receptors and a therapeutic target for acute myeloid leukemia (AML). CD33 contains a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM), which can recruit SHP-1 and SHP-2. How CD33 expression is regulated is unclear. Suppressor of cytokine signaling 3 (SOCS3) is expressed in response to cytokines, LPS, and other PAMPs, and competes with SHP-1/2 binding to ITIMs of cytokine receptors, thereby inhibiting signaling. In this study, using peptide pull-down experiments, we found that SOCS3 can specifically bind to the phosphorylated ITIM of CD33. Additionally, following cross-linking SOCS3 can recruit the ECS E3 ligase resulting in accelerated proteasomal degradation of both CD33 and SOCS3. Our data suggest that the tyrosine motifs in CD33 are not important for internalization, while they are required for degradation. Moreover, SOCS3 inhibited the CD33-induced block on cytokine-induced proliferation. This is the first receptor shown to be degraded by SOCS3 and where SOCS3 and its target protein are degraded concomitantly. Our findings clearly suggest that during an inflammatory response, the inhibitory receptor CD33 is lost by this mechanism. Moreover, this has important clinical implications as tumors expressing SOCS3 may be refractory to -CD33 therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) and hepatitis B virus (HBV) have been associated with hematopoietic malignancies, but data for many subtypes are limited. From the U.S. Surveillance, Epidemiology, and End Results-Medicare database, we selected 61,464 cases (=67 years) with hematopoietic malignancies and 122,531 population-based controls, frequency-matched by gender, age, and year (1993-2002). Logistic regression was used to compare the prevalence of HCV, HBV, and alcoholic hepatitis in cases and controls, adjusted for matching factors, race, duration of Medicare coverage, and number of physician claims. HCV, HBV, and alcoholic hepatitis were reported in 195 (0.3%), 111 (0.2%), and 404 (0.7%) cases and 264 (0.2%), 242 (0.2%), and 798 (0.7%) controls, respectively. HCV was associated with increased risk of diffuse large B-cell lymphoma [odds ratio (OR) 1.52, 95% confidence interval (95% CI) 1.05-2.18], Burkitt lymphoma (OR 5.21, 95% CI 1.62-16.8), follicular lymphoma (OR 1.88, 95% CI 1.17-3.02), marginal zone lymphoma (OR 2.20, 95% CI 1.22-3.95), and acute myeloid leukemia (OR 1.54, 95% CI 1.00-2.37). In contrast, HBV was unrelated to any hematopoietic malignancies. Alcoholic hepatitis was associated with decreased risk of non-Hodgkin lymphoma overall, but increased risk of Burkitt lymphoma. In summary, HCV, but not other causes of hepatitis, was associated with the elevated risk of non-Hodgkin lymphoma and acute myeloid leukemia. HCV may induce lymphoproliferative malignancies through chronic immune stimulation. Copyright © 2008 American Association for Cancer Research.


--------------------------------------------------------------------------------

Reaxys Database Information|

--------------------------------------------------------------------------------

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hemopoietic progenitor cells express clustered homeobox (Hox) genes in a pattern characteristic of their lineage and stage of differentiation. In general, HOX expression tends to be higher in more primitive and lower in lineage-committed cells. These trends have led to the hypothesis that self-renewal of hemopoietic stem/progenitor cells is HOX-dependent and that dysregulated HOX expression underlies maintenance of the leukemia-initiating cell. Gene expression profile studies support this hypothesis and specifically highlight the importance of the HOXA cluster in hemopoiesis and leukemogenesis. Within this cluster HOXA6 and HOXA9 are highly expressed in patients with acute myeloid leukemia and form part of the "Hox code" identified in murine models of this disease. We have examined endogenous expression of Hoxa6 and Hoxa9 in purified primary progenitors as well as four growth factor-dependent cell lines FDCP-Mix, EML, 32Dcl3, and Ba/F3, representative of early multipotential and later committed precursor cells respectively. Hoxa6 was consistently higher expressed than Hoxa9, preferentially expressed in primitive cells and was both growth-factor and cell-cycle regulated. Enforced overexpression of HOXA6 or HOXA9 in FDCP-Mix resulted in increased proliferation and colony formation but had negligible effect on differentiation. In both FDCP-Mix and the more committed Ba/F3 precursor cells overexpression of HOXA6 potentiated factor-independent proliferation. These findings demonstrate that Hoxa6 is directly involved in fundamental processes of hemopoietic progenitor cell development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Connectivity mapping is a recently developed technique for discovering the underlying connections between different biological states based on gene-expression similarities. The sscMap method has been shown to provide enhanced sensitivity in mapping meaningful connections leading to testable biological hypotheses and in identifying drug candidates with particular pharmacological and/or toxicological properties. Challenges remain, however, as to how to prioritise the large number of discovered connections in an unbiased manner such that the success rate of any following-up investigation can be maximised. We introduce a new concept, gene-signature perturbation, which aims to test whether an identified connection is stable enough against systematic minor changes (perturbation) to the gene-signature. We applied the perturbation method to three independent datasets obtained from the GEO database: acute myeloid leukemia (AML), cervical cancer, and breast cancer treated with letrozole. We demonstrate that the perturbation approach helps to identify meaningful biological connections which suggest the most relevant candidate drugs. In the case of AML, we found that the prevalent compounds were retinoic acids and PPAR activators. For cervical cancer, our results suggested that potential drugs are likely to involve the EGFR pathway; and with the breast cancer dataset, we identified candidates that are involved in prostaglandin inhibition. Thus the gene-signature perturbation approach added real values to the whole connectivity mapping process, allowing for increased specificity in the identification of possible therapeutic candidates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The diagnosis of myelodysplastic syndrome (MDS) currently relies primarily on the morphologic assessment of the patient's bone marrow and peripheral blood cells. Moreover, prognostic scoring systems rely on observer-dependent assessments of blast percentage and dysplasia. Gene expression profiling could enhance current diagnostic and prognostic systems by providing a set of standardized, objective gene signatures. Within the Microarray Innovations in LEukemia study, a diagnostic classification model was investigated to distinguish the distinct subclasses of pediatric and adult leukemia, as well as MDS. Overall, the accuracy of the diagnostic classification model for subtyping leukemia was approximately 93%, but this was not reflected for the MDS samples giving only approximately 50% accuracy. Discordant samples of MDS were classified either into acute myeloid leukemia (AML) or

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute myeloid leukemia (AML) may follow a JAK2-positive myeloproliferative neoplasm (MPN), although the mechanisms of disease evolution, often involving loss of mutant JAK2, remain obscure. We studied 16 patients with JAK2-mutant (7 of 16) or JAK2 wild-type (9 of 16) AML after a JAK2-mutant MPN. Primary myelofibrosis or myelofibrotic transformation preceded all 7 JAK2-mutant but only 1 of 9 JAK2 wild-type AMLs (P = .001), implying that JAK2-mutant AML is preceded by mutation(s) that give rise to a "myelofibrosis" phenotype. Loss of the JAK2 mutation by mitotic recombination, gene conversion, or deletion was excluded in all wild-type AMLs. A search for additional mutations identified alterations of RUNX1, WT1, TP53, CBL, NRAS, and TET2, without significant differences between JAK2-mutant and wild-type leukemias. In 4 patients, mutations in TP53, CBL, or TET2 were present in JAK2 wild-type leukemic blasts but absent from the JAK2-mutant MPN. By contrast in a chronic-phase patient, clones harboring mutations in JAK2 or MPL represented the progeny of a shared TET2-mutant ancestral clone. These results indicate that different pathogenetic mechanisms underlie transformation to JAK2 wild-type and JAK2-mutant AML, show that TET2 mutations may be present in a clone distinct from that harboring a JAK2 mutation, and emphasize the clonal heterogeneity of the MPNs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The t(11; 17)(q23;q21) translocation is associated with a retinoic acid (RA)-insensitive form of acute promyelocytic leukemia (APL), involving the production of reciprocal fusion proteins, promyelocytic leukemia zinc finger-retinoic acid receptor alpha (PLZF-RAR alpha) and RAR alpha-PLZF. Using a combination of chromatin immuno-precipitation promotor arrays (ChIP-chip) and gene expression profiling, we identify novel, direct target genes of PLZF-RAR alpha that tend to be repressed in APL compared with other myeloid leukemias, supporting the role of PLZF-RAR alpha as an aberrant repressor in APL. In primary murine hematopoietic progenitors, PLZF-RAR alpha promotes cell growth, and represses Dusp6 and Cdkn2d, while inducing c-Myc expression, consistent with its role in leukemogenesis. PLZF-RAR alpha binds to a region of the c-MYC promoter overlapping a functional PLZF site and antagonizes PLZF-mediated repression, suggesting that PLZF-RAR alpha may act as a dominant-negative version of PLZF by affecting the regulation of shared targets. RA induced the differentiation of PLZF-RAR alpha-transformed murine hematopoietic cells and reduced the frequency of clonogenic progenitors, concomitant with c-Myc down-regulation. Surviving RA-treated cells retained the ability to be replated and this was associated with sustained c-Myc expression and repression of Dusp6, suggesting a role for these genes in maintaining a self-renewal pathway triggered by PLZF-RAR alpha. (Blood. 2009; 114: 5499-5511)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Today, the classification systems for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) already incorporate cytogenetic and molecular genetic aberrations in an attempt to better reflect disease biology. However, in many MDS/AML patients no genetic aberrations have been identified yet, and even within some cytogenetically well-defined subclasses there is considerable clinical heterogeneity. Recent advances in genomics technologies such as gene expression profiling (GEP) provide powerful tools to further characterize myeloid malignancies at the molecular level, with the goal to refine the MDS/AML classification system, incorporating as yet unknown molecular genetic and epigenetic pathomechanisms, which are likely reflected by aberrant gene expression patterns. In this study, we provide a comprehensive review on how GEP has contributed to a refined molecular taxonomy of MDS and AML with regard to diagnosis, prediction of clinical outcome, discovery of novel subclasses and identification of novel therapeutic targets and novel drugs. As many challenges remain ahead, we discuss the pitfalls of this technology and its potential including future integrative studies with other genomics technologies, which will continue to improve our understanding of malignant transformation in myeloid malignancies and thereby contribute to individualized risk-adapted treatment strategies for MDS and AML patients. Leukemia (2011) 25, 909-920; doi:10.1038/leu.2011.48; published online 29 March 2011

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Myelodysplastic syndrome (MDS) is a group of hematopoietic disorders characterized by peripheral cytopenias in the presence of normo- or hypercellular dysplastic marrow. It has been suggested that premature intramedullary apoptosis may contribute to this phenomenon. We used terminal dUTP nick-end labeling (TUNEL) of bone marrow biopsy specimens and cytocentrifuge preparations from patients with MDS and a variety of other hematopoietic disorders to determine whether there is increased intramedullary apoptosis in MDS and whether any such effect is specific to MDS. TUNEL labeling of bone marrow from 24 patients with MDS revealed significant positivity in 10 of 11 patients with refractory anemia (RA), five of seven with RA and excess of blasts (RAEB), all three patients with RAEB in transformation (RAEB-t), and all three patients with RA with ring sideroblasts (RARS). The percent of positive cells ranged from 5 to 50% but showed no apparent correlation with morphological subtype. In a series of 29 patients with acute leukemia, 17 showed significant positivity (13 of 13 with myeloid disease: three M1, seven M2, one M3, two M4; four of 16 patients with lymphoid disease: one Burkitt-type lymphoma, two null acute leukemia, and one common acute lymphoid leukemia). Intramedullary apoptosis was associated with myeloid or early committed progenitor cells and was highest in secondary acute myeloid leukemia (AML). Normal bone marrow samples from 12 individuals showed no evidence of apoptosis. Our results suggest that an increased level of intramedullary apoptosis is apparent in both patients with MDS and those with AML; those with secondary AML have the highest levels. The relative absence of such findings in lymphoid malignancy suggests that the apoptotic pathways are different in this lineage.