46 resultados para A full-length play


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cancer is one of the leading causes of death in the world. Despite this, a growing number of people are surviving the disease due to medical advancements and the development of numerous new therapies. Doxorubicin, a chemotherapeutic agent, is a widely-used and successful first-line anti-tumour treatment. However, the established toxic and deleterious effects of the drug on the cardiovascular system confer increased risk of congestive heart failure, thereby necessitating the use of reduced doxorubicin doses. In order to investigate how these events are initiated, mouse cardiomyocytes (HL-1) were treated in vitro with varying concentrations of doxorubicin (0.5-4.0 µmol/L). Following treatment (24h), a marked level of cell death was observed in comparison to untreated cardiomyocytes; the level of death appeared to correlate with the concentration of the drug used. Western blotting revealed the cleavage of full length Poly (ADP-ribose) polymerase (PARP) into 89 and 24kDa fragments, a process which is instrumental in triggering programmed cell death/apoptosis. Importantly, results suggested that this event may be independent of caspase 3 cleavage and thus activation. A number of previous studies have reported a functional role for both Mitofusin-2 (Mfn2) and NADPH oxidase 2 (Nox2) in the cardiotoxic response. Given that PARP cleavage is a validated indicator of cellular apoptosis, these results clearly indicate that this marker could be used in future studies when determining if depletion of the above proteins would cause a reduction in or eradicate the pro-apoptotic action of this agent on cardiomyocytes. Such investigations may lead to significant developments in ensuring that doxorubicin can achieve its full therapeutic anti-tumour potential without causing the subsequent deleterious effects on the cardiovascular system.