102 resultados para 186-1151A
Resumo:
Changes to software requirements occur during initial development and subsequent to delivery, posing a risk to cost and quality while at the same time providing an opportunity to add value. Provision of a generic change source taxonomy will support requirements change risk visibility, and also facilitate richer recording of both pre- and post-delivery change data. In this paper we present a collaborative study to investigate and classify sources of requirements change, drawing comparison between those pertaining to software development and maintenance. We begin by combining evolution, maintenance and software lifecycle research to derive a definition of software maintenance, which provides the foundation for empirical context and comparison. Previously published change ‘causes’ pertaining to development are elicited from the literature, consolidated using expert knowledge and classified using card sorting. A second study incorporating causes of requirements change during software maintenance results in a taxonomy which accounts for the entire evolutionary progress of applications software. We conclude that the distinction between the terms maintenance and development is imprecise, and that changes to requirements in both scenarios arise due to a combination of factors contributing to requirements uncertainty and events that trigger change. The change trigger taxonomy constructs were initially validated using a small set of requirements change data, and deemed sufficient and practical as a means to collect common requirements change statistics across multiple projects.
Resumo:
Is there evidence that market forces effectively discipline risk management behaviour within Chinese financial institutions? This study analyses information from a comprehensive sample of Chinese banks over the 1998-2008 period. Market discipline is captured through the impact of four sets of factors namely, market concentration, interbank deposits, information disclosure, and ownership structure. We find some evidence of a market disciplining effect in that: (i) higher (lower) levels of market concentration lead banks to operate with a lower (higher) capital buffer; (ii) joint-equity banks that disclose more information to the public maintain larger capital ratios; (iii) full state ownership reduces the sensitivity of changes in a bank's capital buffer to its level of risk;(iv) banks that release more transparent financial information hold more capital against their non-performing loans. © 2010 Springer Science+Business Media, LLC.
Resumo:
Recent reviews of research regarding children in care have concluded that there remains little research which specifically focuses on young children. This paper presents the findings of research carried out with a sample of young children in care (aged 4-7 years) regarding their perspectives of their circumstances. The findings reveal that they have deeply held views regarding living with risk; removal from their families; unresolved feelings of guilt and loss; and not being listened to. This paper considers the implications of these findings for social work practice. It concludes by stressing the capacity of young children in care to express their perspectives, and the importance of practitioners seeking these views and incorporating them into assessment and decision-making processes.
Resumo:
The development of artificial neural network (ANN) models to predict the rheological behavior of grouts is described is this paper and the sensitivity of such parameters to the variation in mixture ingredients is also evaluated. The input parameters of the neural network were the mixture ingredients influencing the rheological behavior of grouts, namely the cement content, fly ash, ground-granulated blast-furnace slag, limestone powder, silica fume, water-binder ratio (w/b), high-range water-reducing admixture, and viscosity-modifying agent (welan gum). The six outputs of the ANN models were the mini-slump, the apparent viscosity at low shear, and the yield stress and plastic viscosity values of the Bingham and modified Bingham models, respectively. The model is based on a multi-layer feed-forward neural network. The details of the proposed ANN with its architecture, training, and validation are presented in this paper. A database of 186 mixtures from eight different studies was developed to train and test the ANN model. The effectiveness of the trained ANN model is evaluated by comparing its responses with the experimental data that were used in the training process. The results show that the ANN model can accurately predict the mini-slump, the apparent viscosity at low shear, the yield stress, and the plastic viscosity values of the Bingham and modified Bingham models of the pseudo-plastic grouts used in the training process. The results can also predict these properties of new mixtures within the practical range of the input variables used in the training with an absolute error of 2%, 0.5%, 8%, 4%, 2%, and 1.6%, respectively. The sensitivity of the ANN model showed that the trend data obtained by the models were in good agreement with the actual experimental results, demonstrating the effect of mixture ingredients on fluidity and the rheological parameters with both the Bingham and modified Bingham models.
Resumo:
The studies on PKMs have attracted a great attention to robotics community. By deploying a parallel kinematic structure, a parallel kinematic machine (PKM) is expected to possess the advantages of heavier working load, higher speed, and higher precision. Hundreds of new PKMs have been proposed. However, due to the considerable gaps between the desired and actual performances, the majorities of the developed PKMs were the prototypes in research laboratories and only a few of them have been practically applied for various applications; among the successful PKMs, the Exechon machine tool is recently developed. The Exechon adopts unique over-constrained structure, and it has been improved based on the success of the Tricept parallel kinematic machine. Note that the quantifiable theoretical studies have yet been conducted to validate its superior performances, and its kinematic model is not publically available. In this paper, the kinematic characteristics of this new machine tool is investigated, the concise models of forward and inverse kinematics have been developed. These models can be used to evaluate the performances of an existing Exechon machine tool and to optimize new structures of an Exechon machine to accomplish some specific tasks.
Resumo:
It is clear that ELTs will be able to detect extremely weak outgassing from Solar system bodies via a number of different methods. Occultations will allow probing for outgassing around 20 km main-belt asteroids. Imaging can reveal dust emission rates of only milligrams/second in the inner solar system, while sublimation rates of gasses should be measurable down to gram/second levels. Suitable targets will be identified via the coming all-sky surveys, through both the classical dynamical Tisserand Invariant and long-baseline lightcurves. It is possible that using these methods, ELTs may allow the discovery of much more activity throughout the Solar system than is presently known.
Resumo:
1. Diet and health are intimately linked and recent studies have found that caloric restriction can affect immune function. However, when given a choice between diets that differ in their macronutrient composition, pathogen-infected individuals can select a diet that improves their survival, suggesting that the nutritional composition of the diet, as well as its calorie content, can play a role in defence against disease. Moreover, as individuals change their diet when infected, it suggests that a diet that is optimal for growth is not optimal for immunity, leading to trade-offs.
2. Currently, our knowledge of the effects of diet on immunity is limited because previous experiments have manipulated either single nutrients or the calorie content of the diet without considering their interactive effects. By simultaneously manipulating both the diet composition (quality) and its caloric density (quantity), in both naive and immune-challenged insects, we asked how do diet quality and quantity influence an individual's ability to mount an immune response? And to what extent are allocation trade-offs driven by quantity- versus quality-based constraints?
3. We restricted individuals to 20 diets varying in their protein and carbohydrate content and used 3D response surfaces to visualize dietary effects on larval growth and immune traits. Our results show that both constitutive and induced immune responses are not limited by the total quantity of nutrients consumed, but rather different traits respond differently to variation in the ratios of macronutrients (diet quality), and peak in different regions of macronutrient space. The preferred dietary composition therefore represents a compromise between the nutritional requirements of growth and immune responses. We also show that a non-pathogenic immune challenge does not affect diet choice, rather immune-challenged insects modify their allocation of nutrients to improve their immune response.
4. Our results indicate that immune traits are affected by the macronutrient content of the diet and that no diet can simultaneously optimize all components of the immune system. To date the emphasis has been on the effects of micronutrients in improving immunity, our findings indicate that this must be widened to include the neglected impact of macronutrients on defence against disease.
Resumo:
Total cross sections for electron capture are calculated for collisions of fast protons and a-particles with atomic hydrogen. The distorted-wave impulse approximation is applied over the energy range 10-1500 keV/u. State-selective results are given for the 1s, 2s and 2p levels. Both the post and prior forms of the model are calculated and compared with results from other theories and experimental measurements. In general the model performs very well in comparison with experiment over this energy range though discrepancies arise at lower energies.
Resumo:
Free radical production occurs continuously in all cells as part of normal cellular function. However, excess free radical production originating from endogenous or exogenous sources might play a role in many diseases. Antioxidants prevent free radical induced tissue damage by preventing the formation of radicals, scavenging them, or by promoting their decomposition. This article reviews the basic chemistry of free radical formation in the body, the consequences of free radical induced tissue damage, and the function of antioxidant defence systems, with particular reference to the development of atherosclerosis.
Resumo:
Examination of cytological samples of cancer to suggest a possible primary site of origin is one of the commonest and most difficult tasks of diagnostic cytopathologists. Currently, both cytomorphology and immunocytochemistry are the main approaches to this diagnostic dilemma. We report the application of microsatellite analysis in cytological samples in a patient with a primary colonic tumour and two subsequent lung nodules, which were suspected on CT scans of the chest, and compared the findings with those obtained with conventional immunocytochemistry. The molecular results were in agreement with the radiological impression and conflicted with the immunocytochemistry. We conclude that immunocytochemical and molecular biology approaches to the diagnosis of tumours may give rise to contradictory results.