91 resultados para 12-methyl-Tetradecanoic acid, d13C
Resumo:
This article describes an approach for quantifying microsphere deposition onto iron-oxide-coated sand under the influence of adsorbed Suwannee River Humic Acid (SRHA). The experimental technique involved a triple pulse injection of model latex microspheres (microspheres) in pulses of (1) microspheres, followed by (2) SRHA, and then (3) microspheres, into a column filled with iron-coated quartz sand as a water-saturated porous medium. A random sequential adsorption model (RSA) simulated the gradual rise in the first (microsphere) breakthrough curve (BTC). Using the same model calibration parameters a dramatic increase in concentration at the start of the second particle BTC, generated after SRHA injection, could be simulated by matching microsphere concentrations to extrapolated RSA output. RSA results and microsphere/SRHA recoveries showed that 1 mg of SRHA could block 5.90 plus or minus 0.14 x 10^9 microsphere deposition sites. This figure was consistent between experiments injecting different SRHA masses, despite contrasting microsphere deposition/release regimes generating the second microsphere BTC.
Resumo:
Background: Fish intake, the major source of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), may reduce the risk of age-related macular degeneration (AMD). Objective: We investigated the association of oily fish and dietary DHA and EPA with neovascular AMD (NV-AMD). Design: Participants aged =65 y in the cross-sectional population-based EUREYE study underwent fundus photography and were interviewed by using a food-frequency questionnaire. Fundus images were graded by the International Classification System for Age Related Maculopathy. Questionnaire data were converted to nutrient intakes with the use of food-composition tables. Survey logistic regression was used to calculate odds ratios (ORs) and 95% CIs of energy-adjusted quartiles of EPA or DHA with NV-AMD, taking into account potential confounders. Results: Dietary intake data and fundus images were available for 105 cases with NV-AMD and for 2170 controls without any features of early or late AMD. Eating oily fish at least once per week compared with less than once per week was associated with a halving of the odds of NV-AMD (OR = 0.47; 95% CI: 0.33, 0.68; P = 0.002). Compared with the lowest quartile, there was a significant trend for decreased odds with increasing quartiles of either DHA or EPA. ORs in the highest quartiles were 0.32 (95% CI: 0.12, 0.87; P = 0.03) for DHA and 0.29 (95% CI: 0.11, 0.73; P = 0.02) for EPA. Conclusions: Eating oily fish at least once per week compared with less than once per week was associated with a halving of the OR for NV-AMD. © 2008 American Society for Nutrition.
Resumo:
Recent studies implicate the collagen receptor, glycoprotein VI (GPVI) in activation of platelet 12-lipoxygenase (p12-LOX). Herein, we show that GPVI-stimulated 12-hydro(peroxy)eicosatetraenoic acid (H(P)ETE) synthesis is inhibited by palmityl trifluromethyl ketone or oleyloxyethyl phosphocholine, but not bromoenol lactone, implicating secretory and cytosolic, but not calcium-independent phospholipase A(2) (PLA(2)) isoforms. Also, following GPVI activation, 12-LOX co-immunoprecipitates with both cytosolic and secretory PLA(2), (sPLA(2)). Finally, venoms containing sPLA(2) acutely activate p12-LOX in a dose-dependent manner. This study shows that platelet 12-H(P)ETE generation utilizes arachidonate substrate from both c- and sPLA(2) and that 12-LOX functionally associates with both PLA(2) isoforms. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H( P) ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 mug/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI ( GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)-containing FcRgamma chain. Conversely, thrombin only activated at high concentrations (> 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H( P) ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2+ mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H( P) ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P) ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature.
Resumo:
Galactokinase catalyses the site-and stereospecific phosphorylation of galactose at the expense of ATP. The specificity of bacterial galactokinase enzymes can be broadened by alteration of a tyrosine residue to a histidine. The effects of altering the equivalent residue in human galactokinase (Tyr379) were investigated by testing all 19 possible variants. All of these alterations, except Y379P, resulted in soluble protein on expression in Escherichia coli and all the soluble variants could catalyse the phosphorylation of galactose, except Y379A and Y379E. The variants Y379C, Y379K, Y379R, Y379S and Y379W were all able to catalyse the phosphorylation of a variety of monosaccharides, including ones that are not acted on by the wild-type enzyme. Novel substrates for these variant galactokinases included D-mannose and D-fructose. The latter monosaccharide is presumed to react in the pyranose configuration. Molecular modelling suggested that the alterations do not cause changes to the overall structure of the enzyme. However, alteration of Tyr379 increases the flexibility of the peptide backbone in regions surrounding the active site. Therefore, it is proposed that alteration of Tyr379 affects the substrate specificity by the propagation of changes in flexibility to the active site, permitting a broader range of compounds to be accommodated.
Resumo:
The kinetics of photoreduction of methyl orange by ascorbic acid sensitized by colloidal CdS has been studied. Different experimental factors such a [O2], pH and temperature, as well as the presence of potential competitive species like MV2+ and Cd2+ have been taken as variables in this study. O2 and Cd2+ clearly inhibit the photoreduction but the presence of MV2+ increases the reaction rate. The pH greatly influences the kinetics and temperature (T) has little effect. The results are interpreted using a reaction scheme proposed in earlier papers where dispersions of crystalline CdS were used as the photocatalyst and EDTA as the hole scavenger.
Resumo:
The kinetics of photoreduction of methyl orange by ethylenediaminetetraacetic acid (EDTA) sensitized by colloidal CdS are reported as a function of [methyl orange], [O2] and [EDTA]. The results are interpreted using a reaction scheme which was proposed in an earlier paper for the same reaction sensitized by a powdered dispersion of highly crystalline CdS. An analysis of the results for the CdS colloid based on this reaction scheme shows that the rate of dye reduction by photogenerated electrons is approximately 50 times greater than the rate of oxygen reduction and the rate of scavenging of the photogenerated holes is approximately 7000 times greater than the rate of recombination. These findings are discussed in the light of similar observations reported for powdered CdS.
Resumo:
The fatty acid composition of the cellular lipids of Rhodococcus rhodochrous NCIMB 13064 grown on various long-chain haloalkanes has been investigated and the influence of halogen substituents, carbon chain length and the position of halogen substitution in the growth substrate explored. Of the total fatty acids present in cells grown on 1-chloro-, 1-bromo- and 1-iodohexadecane, 75, 90 and 81%, respectively, were substituted in the omega-position by the corresponding halogen but only 1% of the fatty acids present after growth on 1-fluorotetradecane were fluorinated in this position. The extent of the halofatty acid incorporation with different halogen substituents in the growth substrate appears to reflect the degree to which oxygenase attack is restricted to the non-halogenated end of the haloalkane. Studies of the fatty acid composition of cells after growth on a series of 1-chloroalkanes containing an even number of carbon atoms between C-10 and C-18 indicated chlorofatty acid incorporation from C-12 to C-18 substrates at levels ranging from 21% with C-12 to 75% with C-16. The chlorofatty acids formed by initial oxidation of the chloroalkane were chain-lengthened or chain-shortened by from two to eight carbon atoms, with accompanying desaturation in some instances. Substantial quantities of a methyl-branched C-19:0 chlorofatty acid were also present with several chloroalkane substrates, When the fatty acid composition of cells after growth on 1-bromoalkanes containing an odd number of carbon atoms between C-11 and C-17 was examined, the incorporation of bromofatty acids was observed with C-13, C-15 and C-17 substrates; a maximum of 76% was recorded for the C-15 bromoalkane. As with even chain-length chloroalkanes, both chain-lengthening and -shortening occurred predominantly via two-carbon units so that most bromoacids present possessed an odd number of carbon atoms, When 1-bromododecane or 2-bromododecane were substrates, overall incorporations of bromofatty acids into the lipid fraction were very similar, demonstrating that the position of halogen substitution in the haloalkane was not critical in determining the extent of incorporation of the haloacids into cellular lipids. The results of the study indicate a mechanism by which degradation products of chlorinated paraffins could enter the biological food chain.
Resumo:
Amphibian skin secretions are unique sources of bioactive peptides and their donor species are currently rapidly disappearing from the biosphere. Here, we report that both peptides and polyadenylated mRNAs from skin granular glands remain amenable to study in samples of stimulated skin secretions following their storage in 0.1 % aqueous trifluoroacetic acid at -20 °C for many years. Frozen acidified solutions of toad (Bombina variegata) skin secretions, stored for 12 years, were thawed and samples removed for direct reverse phase HPLC fractionation. Additional samples were removed, snap frozen and lyophilised for construction of cDNA libraries following polyadenylated mRNA capture using magnetic oligo-dT beads and reverse transcription. Using the bombesin and bradykinin peptides found in bombinid toad skin as models, individual variant peptides of each type were located in reverse phase HPLC fractions and their corresponding biosynthetic precursor-encoding mRNA transcripts were cloned from the cDNA library using a RACE PCR strategy. This study illustrates unequivocally that both amphibian skin secretion peptides and their biosynthetic precursor-encoding polyadenylated mRNAs are stable in frozen acid-solvated skin secretion samples for considerable periods of time-a finding that may have fundamental implications in the study of archived materials but also in the wider field of molecular biology.
Resumo:
Wzx belongs to a family of membrane proteins involved in the translocation of isoprenoid lipid-linked glycans, which is loosely related to members of the major facilitator superfamily. Despite Wzx homologs performing a conserved function, it has been difficult to pinpoint specific motifs of functional significance in their amino acid sequences. Here, we elucidate the topology of the Escherichia coli O157 Wzx (Wzx(EcO157)) by a combination of bioinformatics and substituted cysteine scanning mutagenesis, as well as targeted deletion-fusions to green fluorescent protein and alkaline phosphatase. We conclude that Wzx(EcO157) consists of 12 transmembrane (TM) helices and six periplasmic and five cytosolic loops, with N and C termini facing the cytoplasm. Four TM helices (II, IV, X, and XI) contain polar residues (aspartic acid or lysine), and they may form part of a relatively hydrophilic core. Thirty-five amino acid replacements to alanine or serine were targeted to five native cysteines and most of the aspartic acid, arginine, and lysine residues. From these, only replacements of aspartic acid-85, aspartic acid-326, arginine-298, and lysine-419 resulted in a protein unable to support O-antigen production. Aspartic acid-85 and lysine-419 are located in TM helices II and XI, while arginine-298 and aspartic acid-326 are located in periplasmic and cytosolic loops 4, respectively. Further analysis revealed that the charge at these positions is required for Wzx function since conservative substitutions maintaining the same charge polarity resulted in a functional protein, whereas those reversing or eliminating polarity abolished function. We propose that the functional requirement of charged residues at both sides of the membrane and in two TM helices could be important to allow the passage of the Und-PP-linked saccharide substrate across the membrane.
Functional analysis of the large periplasmic loop of the Escherichia coli K-12 WaaL O-antigen ligase
Resumo:
WaaL is a membrane enzyme implicated in ligating undecaprenyl-diphosphate (Und-PP)-linked O antigen to lipid A-core oligosaccharide. We determined the periplasmic location of a large (EL5) and small (EL4) adjacent loops in the Escherichia coli K-12 WaaL. Structural models of the EL5 from the K-12, R1 and R4 E. coli ligases were generated by molecular dynamics. Despite the poor amino acid sequence conservation among these proteins, the models afforded similar folds consisting of two pairs of almost perpendicular alpha-helices. One alpha-helix in each pair contributes a histidine and an arginine facing each other, which are highly conserved in WaaL homologues. Mutations in either residue rendered WaaL non-functional, since mutant proteins were unable to restore O antigen surface expression. Replacements of residues located away from the putative catalytic centre and non-conserved residues within the centre itself did not affect ligation. Furthermore, replacing a highly conserved arginine in EL4 with various amino acids inactivates WaaL function, but functionality reappears when the positive charge is restored by a replacement with lysine. These results lead us to propose that the conserved amino acids in the two adjacent periplasmic loops could interact with Und-PP, which is the common component in all WaaL substrates.
Resumo:
Wzz is a membrane protein that determines the chain length distribution of the O-antigen lipopolysaccharide by an unknown mechanism. Wzz proteins consist of two transmembrane helices separated by a large periplasmic loop. The periplasmic loop of Escherichia coli K-12 Wzz (244 amino acids from K65 to A308) was purified and found to be a monomer with an extended conformation, as determined by gel filtration chromatography and analytical ultracentrifugation. Circular dichroism showed that the loop has a 60% helical content. The Wzz periplasmic loop also contains three regions with predicted coiled coils. To probe the function of the predicted coiled coils, we constructed amino acid replacement mutants of the E. coli K-12 Wzz protein, which were designed so that the coiled coils could be separate without compromising the helicity of the individual molecules. Mutations in one of the regions, spanning amino acids 108 to 130 (region I), were associated with a partial defect in O-antigen chain length distribution, while mutants with mutations in the region spanning amino acids 209 to 223 (region III) did not have an apparent functional defect. In contrast, mutations in the region spanning amino acids 153 to 173 (region II) eliminated the Wzz function. This phenotype was associated with protein instability, most likely due to conformational changes caused by the amino acid replacements, which was confirmed by limited trypsin proteolysis. Additional mutagenesis based on a three-dimensional model of region I demonstrated that the amino acids implicated in function are all located at the same face of a predicted alpha-helix, suggesting that a coiled coil actually does not exist in this region. Together, our results suggest that the regions predicted to be coiled coils are important for Wzz function because they maintain the native conformation of the protein, although the existence of coiled coils could not be demonstrated experimentally.
Resumo:
When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL of the free fatty acid receptor 2 (FFA2) could be developed on the basis of pharmacological variation between species orthologs. For this, bovine FFA2 was characterized, revealing distinct ligand selectivity compared with human FFA2. Homology modeling and mutational analysis demonstrated a single mutation in human FFA2 of C4.57G resulted in a human FFA2 receptor with ligand selectivity similar to the bovine receptor. This was exploited to generate human FFA2-RASSL by the addition of a second mutation at a known orthosteric ligand interaction site, H6.55Q. The resulting FFA2-RASSL displayed a >100-fold loss of activity to endogenous ligands, while responding to the distinct ligand sorbic acid with pEC(50) values for inhibition of cAMP, 5.83 ± 0.11; Ca(2+) mobilization, 4.63 ± 0.05; ERK phosphorylation, 5.61 ± 0.06; and dynamic mass redistribution, 5.35 ± 0.06. This FFA2-RASSL will be useful in future studies on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.-Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs.
Resumo:
Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [S-35] guanosine 5'-(3-O-thio) triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp(3)-hybridized alpha-carbons preferentially activate FFA3, whereas ligands with sp(2)- or sp-hybridized alpha-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors.