563 resultados para Ionic selectivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug flux across microneedle (MN)-treated skin is influenced by the characteristics of the MN array, formed microconduits and physicochemical properties of the drug molecules in addition to the overall diffusional resistance of microconduits and viable tissue. Relative implication of these factors has not been fully explored. In the present study, the in vitro permeation of a series of six structurally related ionic xanthene dyes with different molecular weights (MW) and chemical substituents, across polymer MN-pretreated porcine skin was investigated in relation of their molecular characteristics. Dyes equilibrium solubility, partition coefficient in both n-octanol or porcine skin/aqueous system, and dissociation constants were determined. Results indicated that for rhodamine dyes, skin permeation of the zwitterionic form which predominates at physiological pH, was significantly reduced by an increase in MW, the skin thickness and by the presence of the chemically reactive isothiocyanate substituent. These factors were generally shown to override the aqueous solubility, an important determinant of drug diffusion in an aqueous milieu. The data obtained provided more insight into the mechanism of drug permeation across MN-treated skin, which is of importance to both the design of MN-based transdermal drug delivery systems and of relevance to skin permeation research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We unravel the complex chemistry in both the neutral and ionic systems of a radio-frequency-driven atmospheric-pressure plasma in a helium-oxygen mixture (He-0.5% O) with air impurity levels from 0 to 500 ppm of relative humidity from 0% to 100% using a zero-dimensional, time-dependent global model. Effects of humid air impurity on absolute densities and the dominant production and destruction pathways of biologically relevant reactive neutral species are clarified. A few hundred ppm of air impurity crucially changes the plasma from a simple oxygen-dependent plasma to a complex oxygen-nitrogen-hydrogen plasma. The density of reactive oxygen species decreases from 10 to 10 cm, which in turn results in a decrease in the overall chemical reactivity. Reactive nitrogen species (10 cm ), atomic hydrogen and hydroxyl radicals (10-10 cm) are generated in the plasma. With 500 ppm of humid air impurity, the densities of positively charged ions and negatively charged ions slightly increase and the electron density slightly decreases (to the order of 10 cm). The electronegativity increases up to 2.3 compared with 1.5 without air admixture. Atomic hydrogen, hydroxyl radicals and oxygen ions significantly contribute to the production and destruction of reactive oxygen and reactive nitrogen species. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic liquids with chlorometallate anions may not have been the first ionic liquids, however, it was their development that lead to the recognition that ionic liquids are a distinct, and useful, class of (functional) materials. While much of the phenomenal interest and attention over the past two decades has focussed on ‘air and water stable’ ionic liquids, research and application of chlorometallate systems has continued unabated albeit largely out of the main spotlight. The defining characteristic of chlorometallates is the presence of complex anionic equilibria, which depend both on the type and on the concentration of metal present, and leads directly to their characteristic and individual properties. Here, we review the experimental techniques that can be applied to study and characterise the anion speciation in these ionic liquids and, using recent examples, illustrate how their applications base is evolving beyond traditional applications in Lewis acidic catalysis and electrochemistry through to uses as soft and component materials, in the ionothermal synthesis of semiconductors, gas storage systems and key components in the development of biomass processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The viscosity of four imidazolium-based ionic liquids is analyzed as a function of pressure and temperature. Experimental measurements were carried out using an electromagnetic moving piston viscometer in the 303-353 K and 0.1-70 MPa ranges on synthesized ultrapure samples, and compared with available literature data. Molecular dynamics simulations were used to analyze the fluids' dynamic properties from a nanoscopic viewpoint, with special attention paid to self-diffusion coefficients and dynamic viscosity. Simulated properties are in excellent agreement with experimental results in spite of the glasslike dynamics of some of the studied fluids. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optically active S-alkyl-N, N'-bis((S)-1-phenylethyl) thiouronium salts, abbreviated as (S)-[Cnpetu] Y (where Y is an anion; n = 1, 2, 3, 4, 6, 8, 10, 12 or 16), have been prepared and studied by a broad spectrum of analyses. This consists of density, viscosity, and conductivity determination, followed by a discussion of relevant correlations. Unusual trends depending on the S-alkyl chain length were documented for (S)-[Cnpetu][ NTf2] series (where [NTf2] = bis{(trifluoromethyl) sulfonyl} amide), including the viscosity decreasing with increasing chain length, and the conductivity showing a maximum between the S-butyl and the S-hexyl derivative. In addition, a hindered rotamerism of the thiouronium cation in dmso-d(6) solution was recognised by H-1 and C-13 NMR techniques. Thorough analysis of NMR spectra confirmed that the main contribution comes from rotation about the partial double C-S bond. For the first time, a neat thiouronium ionic liquid system has been subjected to quantitative analysis of hindered rotamerism by dynamic NMR coalescence studies, with estimated activation energy for rotation of 63.9 +/- 0.4 kJ mol(-1). Finally, the application of (S)-[C(n)petu] Y salts as chiral discriminating agents for carboxylates by 1H NMR spectroscopy was further investigated, demonstrating the influence of the S-alkyl chain length on chiral recognition; (S)-[C(2)petu][NTf2] ionic liquid with the mandelate anion gave the best results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective hydrogenation of acetylene to ethylene on several Pd surfaces (Pd(111), Pd(100), Pd(211), and Pd(211)-defect) and Pd surfaces with subsurface species (carbon and hydrogen) as well as a number of Pd-based alloys (Pd-M/Pd(111) and Pd-M/Pd(211) (M = Cu, Ag and Au)) are investigated using density functional theory calculations to understand both the acetylene hydrogenation activity and the selectivity of ethylene formation. All the hydrogenation barriers are calculated, and the reaction rates on these surfaces are obtained using a two-step model. Pd(211) is found to have the highest activity for acetylene hydrogenation while Pd(100) gives rise to the lowest activity. In addition, more open surfaces result in over-hydrogenation to form ethane, while the close-packed surface (Pd(111)) is the most selective. However, we also find that the presence of subsurface carbon and hydrogen significantly changes the reactivity and selectivity of acetylene toward hydrogenation on Pd surfaces. On forming surface alloys of Pd with Cu, Ag and Au, the selectivity for ethylene is also found to be changed. A new energy decomposition method is used to quantitatively analyze the factors in determining the changes in selectivity. These surface modifiers are found to block low coordination unselective sites, leading to a decreased ethane production. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra in the range of the totally symmetric stretching mode of the [PF6]− anion, νs(PF6), have been measured for 1-alkyl-3-methylimidazolium ionic liquids [CnC1im][PF6], for n = 4, 6, and 8, as a function of pressure at room temperature. The ionic liquids [C6C1im][PF6] and [C8C1im][PF6] remain in an amorphous phase up to 3.5 GPa, in contrast to [C4C1im][PF6], whichcrystallizes above ∼0.5 GPa. Equations of state based either on a group contribution model or Carnahan-Starling-van der Waals model have been used to estimate the densities of the ionic liquids at high pressures. The shifts of the vibrational frequency of νs(PF6) with density observed in [C6C1im][PF6] and in [C8C1im][PF6] have been calculated by a hard-sphere model of a pseudo-diatomic solute under short-range repulsive interactions with the neighboring particles. The stochastic model of Kubo for vibrational dephasing has been used to obtain the amplitude of vibrational frequency fluctuation, ⟨Δω 2⟩, and the relaxation time of frequency fluctuation, τ c , as a function of density by Raman band shape analysis of the νs(PF6) mode of [C6C1im][PF6] and [C8C1im][PF6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diol reactivity can be manipulated in ionic liquids to selectively give chlorinated or cyclic sulfite/sulfate products depending on the ionic liquid used and the presence or absence of base. In comparison with reactions in dichloromethane, the ionic liquid mediated reactions show greatly improved yields and product stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of ionic liquids (ILs) and supercritical CO2 (scCO2) allows efficient catalytic processes to be developed. Catalyst separation is generally a major challenge when enzymes or homogeneous organometallic catalysts are utilised for reactions, and IL–scCO2 systems address these separation problems, facilitating the recycling or continual use of the catalyst. Typically these systems involve a catalyst being dissolved in an IL and this is where it remains during the process, with scCO2 extracting the products from the IL (catalyst) phase. ILs and many catalysts are not soluble in scCO2 and this facilitates the clean separation of products from the catalyst and IL. When the pressure is reduced in a collection chamber, the scCO2 returns to CO2 gas and products can be obtained without contamination of catalyst or solvents. It is possible to operate IL–scCO2 systems in a continuous flow manner and this further improves the efficiency and industrial potential of these systems. This chapter will introduce the fundamental properties of these multiphase catalytic systems. It will also highlight key examples of catalytic processes from the academic literature which illustrate the benefits of utilising this combination of solvents for catalysis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent article (J. Am. Chem. Soc. 2011, 133, 20186) we investigated the initial spatial distribution of dry excess electrons in a series of room-temperature ionic liquids (RTILs). Perhaps unexpectedly, we found that in some alkylammonium-based systems the excess negative charge resided on anions and not on the positive cations. Following on these results, in the current paper we describe the time evolution of an excess electronic charge introduced in alkylammonium- and pyrrolidinium-based ionic liquids coupled with the bis(trifluoromethylsulfonyl)amide ([TfN]) anion. We find that on a 50 fs time scale an initially delocalized excess electron localizes on a single [TfN] anion which begins a fragmentation process. Low-energy transitions have a very different physical origin on the several femtoseconds time scale when compared to what occurs on the picosecond time scale. At time zero, these are intraband transitions of the excess electron. However after 40 fs when the excess electronic charge localizes on a single anion, these transitions disappear, and the spectrum is dominated by electron-transfer transitions between the fragments of the doubly charged breaking anion. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most active binary PtSn catalyst for direct ethanol fuel cell applications has been studied at 20 oC and 60 oC, using variable temperature electrochemical in-situ FTIR. In comparison with Pt, binary PtSn inhibits ethanol dissociation to CO(a), but promotes partial oxidation to acetaldehyde and acetic acid. Increasing the temperature from 20 oC to 60 oC facilitates both ethanol dissociation to CO(a) and their further oxidation to CO2, leading to an increased selectivity towards CO2; however, acetaldehyde and acetic acid are still the main products. Potential-dependent phase diagrams for surface oxidants of OH(a) formation on Pt(111), Pt(211) and Sn modified Pt(111) and Pt(211) surfaces have been determined using density functional theory (DFT) calculations. It is shown that Sn promotes the formation of OH(a) with a lower onset potential on the Pt(111) surface, whereas an increase in the onset potential is found on modification of the (211) surface. In addition, Sn inhibits the Pt(211) step edge with respect to ethanol C-C bond breaking compared with that found on the pure Pt, which reduces the formation of CO(a). Sn was also found to facilitate ethanol dehydrogenation and partial oxidation to acetaldehyde and acetic acid which, combined with the more facile OH(a) formation on the Pt(111) surface, gives us a clear understanding of the experimentally determined results. This combined electrochemical in-situ FTIR and DFT study, provides, for the first time, an insight into the long-term puzzling features of the high activity but low CO2 production found on binary PtSn ethanol fuel cell catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical conductivity of a series of pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids, functionalized with a nitrile (cyano) group at the end of an alkyl chain attached to the cation, was studied in the temperature range between 173 K and 393 K. The glass formation of the ionic liquids is influenced by the length of the alkyl spacer separating the nitrile function from the pyrrolidinium ring. The electrical conductivity and the viscosity do not show a monotonic dependence on the alkyl spacer length, but rather an odd-even effect. An explanation for this behavior is given, including the potential energy landscape picture for the glass transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to predict the likely ecological impacts of invasive species in fresh waters is a pressing research requirement. Whilst comparisons of species traits and considerations of invasion history have some efficacy in this respect, we require robust methods that can compare the effects of native and invasive species. Here, we utilise comparative functional responses and prey selectivity experiments to understand and predict the ecological impact of an invader as compared to a native. We compared the predatory functional responses of an emerging invasive species in Europe, the 'killer shrimp', Dikerogammarus villosus, and an analogous native species, Gammarus pulex, towards three representative prey species: Asellus aquaticus, Daphnia magna and Chironomus sp. Furthermore, as ecological impact may be greater for invasive species with more indiscriminate feeding habits, we compared the selectivity for the three prey types between the invasive and native species. In both the presence and absence of experimental habitats, large D. villosus, and those matched for body size with G. pulex, generally showed higher (Type II) functional responses than G. pulex, with the invasive species exhibiting higher maximum feeding rates. Further, D. villosus exhibited significantly more indiscriminate prey selection compared with G. pulex, a trait that became more evident as the invader increased in size. Differences in functional responses and prey selectivity were prey species specific, with higher to lower predicted impacts in the order A. aquaticus, D. magna and Chironomus sp. This is in accord with the impact of this invasive species on macroinvertebrates in the field. We thus provide understanding of the known ecological impact of D. villosus and discuss the utility of the phenomenological use of comparative functional responses and resource use as a tool through which the potential ecological impacts of invasive species may be identified. © 2013 John Wiley & Sons Ltd.