687 resultados para Atomic and Molecular Physics, and Optics
Resumo:
Methane activation is a crucial step in the conversion of methane to valuable oxygenated products. In heterogeneous catalysis, however, methane activation often leads to complete dissociation: If a catalyst can activate the first C-H bond in CH4, it can often break the remaining C-H bonds. In this study, using density functional theory, we illustrate that single C-H bond activation in CH4 is possible. We choose a model system which consists of isolated Pt atoms on a MoO3(010) surface. We find that the Pt atoms on this surface can readily activate the first C-H bond in methane. The reaction barrier of only 0.3 eV obtained in this study is significantly lower than that on a Pt(111) surface. We also find, in contrast to the processes on pure metal surfaces, that the further dehydrogenation of methyl (CH3) is very energetically unfavorable on the MoO3-supported Pt catalyst. (C) 2002 American Institute of Physics.
Resumo:
Density-functional theory has been used to investigate the chemisorption of S, SH, and H2S as well as the coadsorption of S and H and SH and H on Pt(111). In addition reaction pathways and energy profiles for the conversion of adsorbed S and H into gas-phase H2S have been determined. It has been found that S, SH, and H2S bind preferentially at face-centered-cubic (fcc), bridge, and top sites, respectively. Both the S+H and SH+H reactions have high barriers (similar to1 eV) and high exothermicities (similar to1 eV). This reveals that adsorbed H2S and SH are highly unstable adsorbates on Pt(111) and that adsorbed S (and H) is the most stable SHX (X=0,1,2) intermediate on Pt(111) (C) 2001 American Institute of Physics.
Resumo:
A catalyst preparation by design is one of the ultimate goals in chemistry. The first step towards this goal is to understand the origin of reaction barriers. In this study, we have investigated several catalytic reactions on some transition metal surfaces, using density functional theory. All the reaction barriers have been determined. By detailed analyses we obtain some insight into the reaction barrier. Each barrier is related to (i) the potential energy surface of reactants on the surface, (ii) the total chemisorption energy of reactants, and (iii) the metal d orbital occupancy and the reactant valency. (C) 2001 American Institute of Physics.
Resumo:
Catalytic ammonia synthesis is believed to proceed via dissociation of N-2 and H-2 with subsequent stepwise addition reactions from an adsorbed nitrogen atom to NH3. The first step, N-2 dissociation, has been thoroughly studied. However, little is known about the microscopic details of the stepwise addition reactions. To shed light on these stepwise addition reactions, density functional theory calculations with the generalized gradient approximation are employed to investigate NHx (x=1,3) formation on Ru(0001). Transition states and reaction barriers are determined in each elementary step. It is found that the reaction barriers for stepwise addition reactions are rather high, for example, the barrier for NH hydrogenation is calculated to be 1.28 eV, which is comparable with that of N-2 dissociation. In addition, one of the stepwise addition reactions on a stepped surface is also considered. The reaction barrier is found to be much higher than that of N-2 dissociation on the same stepped surface, which indicates the importance of stepwise addition reactions in ammonia synthesis. (C) 2001 American Institute of Physics.
Resumo:
Dissociative adsorption is one of the most important reactions in catalysis. In this communication we propose a model aiming to generalize the important factors that affect dissociation reactions. Specifically, for a dissociation reaction, say AB -->A + B, the model connects the dissociation barrier with the association barrier, the chemisorption energies of A and B at the final state and the bonding energy of AB in the gas phase. To apply this model, we have calculated CO dissociation on Ru(0001), Rh(111), Pd(111) (4d transition metals), Os(0001), Ir(111), and Pt(111) (5d transition metals) using density function theory (DFT). All the barriers are determined. We find that the DFT results can be rationalized within the model. The model can also be used to explain many experimental observations. (C) 2001 American Institute of Physics.
Resumo:
Ruthenium is one of the poorest catalysts for CO oxidation under normal conditions (low or medium O coverage and normal temperature). However, a recent study [Science 285, 1042 (1999)] reveals that, under femtosecond laser irradiation, CO2 can be formed on the Ru surface, and the reaction follows an electron-mediated mechanism. We carried out density functional theory calculations to investigate CO oxidation via an electron-mediated mechanism on Ru(0001). By comparison to the reaction under normal conditions, following features emerge in the electron-mediated mechanism: (i) more reaction channels are open; (ii) the reaction barrier is significantly lowered. The physical origins for these novel features have been analyzed. (C) 2001 American Institute of Physics.
Resumo:
Collision strengths for transitions among the energetically lowest 134 levels of the (1s(2)2s(2)) 2p(6)3l, 2p(5)3s(2), 2p(5)3s3p, 2p(5)3s3d, 2p(5)3p3d and 2p(5)3d(2) configurations of Fe XVI are computed, over an electron energy range below 570 Ryd, using the Dirac atomic R-matrix code (DARC) and the flexible atomic code (FAC). All partial waves with J
Resumo:
In dielectronic recombination of hydrogenlike ions an intermediate doubly excited heliumlike ion is formed. Since the K shell is empty, both excited electrons can decay sequentially to the ground state. In this paper we analyze the x-ray radiation emitted from doubly and singly excited heliumlike titanium ions produced inside the Tokyo electron beam ion trap. Theoretical population densities of the singly excited states after the first transition and the transition probabilities of these states into the ground state were also calculated. This allowed theoretical branching ratios to be determined for each manifold. These branching ratios are compared to the experimentally obtained x-ray distribution by fitting across the relevant peak using a convolution of the theoretically obtained resonance strengths and energies. By taking into account 2E1 transitions which are not observed in the experiment, the measured and calculated ratios agree well. This method provides a valuable insight into the transition dynamics of excited highly charged ions.
Resumo:
Subwavelength resonators at FIR are presented and studied. The structures consist of 1D cavities formed between a metallized (silver) surface and a metamaterial surface comprising a periodic array of silver patches on a silver-backed silicon substrate. The concept derives from recent discoveries of artificial magnetic conductors (AMC). By studying the currents excited on the metamaterial surface by a normally incident plane wave, the nature of the emerging resonant phenomena and the physical mechanism underlying the AMC operation are investigated. Full wave simulations, based on finite element method and time-domain transmission line modelling technique, have been carried out to demonstrate the effective AMC boundary condition and prove the possibilities for subwavelength cavities. The quality factor of the resonant cavities is assessed as a function of the cavity profile. It is demonstrated that the quality factor drops to about 1/8 of the half-wavelength value for lambda/8 resonant cavity.
Resumo:
Planar periodic arrays of metallic elements printed on grounded dielectric substrates are presented to exhibit left-handed properties for surface wave propagation. The proposed structures dispense with the need for grounding vias and ease the implementation of uniplanar left-handed metamaterials at higher frequencies. A transmission line description is used for the initial design and interpretation of the left-handed property. A thorough study based on full wave simulations is carried out with regards to the effect of the element geometrical characteristics and the array periodicity to the properties of the artificial material. Dispersion curves are presented and studied. The distribution of the modal fields in the unit cell is also studied in order to provide an explanation of the material properties. The scalability of the proposed structures to infrared frequencies is demonstrated.
Resumo:
Novel periodically loaded E-plane waveguide resonators are presented in this paper. The proposed resonators make use of the slow-wave effect in order to achieve significantly increased loaded Q values for resonators of constant volume, as compared to their homogeneous counterparts, without introducing any complexity in the fabrication process. Numerical and experimental results are presented to validate the argument. (C) 2003 Wiley Periodicals, Inc.