452 resultados para Cyans-based ionic liquids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immobilization of a ruthenium complex (Ru2Cl4(az-tpy)2) within a range of supported ionic liquids ([C4C1im]Cl, [C4C1im][NTf2], [C6C1im]Cl, [C4C1pyrr]Br, [C4C1im]Br, [C4C1pyrr]Cl) dispersed silica (SILP) operates as an efficient heterogeneous catalyst in oxidation of long chain linear primary amines to corresponding nitriles. This reaction follows a “green” route using a cheap and easy to handles oxidant (oxygen or air). The conversion was found to be strongly influenced by the alkyl chain length of the amine substrate and the choice of oxidant. No condensation reaction was observed between the starting amines and the selectivity to nitrile is 100%. Moving from a composition of 20 atm N2/5 atm O2 to 5 atm N2/20 atm O2 led to enhancements in the conversion (n-alkylamines) and selectivity (benzonitrile) which have been correlated with an increase of the solubilized oxygen. This was further supported by using different inert gas (nitrogen, helium, argon)/oxygen mixtures indicating that the O2 solubility in the SILP system, has an important effect on conversions and TON in this reaction using SILP catalysts. Experiments performed in the presence of CO2 led to a different behaviour due to the formation of amine-CO2 adducts. The application of the Weisz–Prater criterion confirmed the absence of any diffusional constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study is to provide an alternative model approach, i.e., artificial neural network (ANN) model, to predict the compositional viscosity of binary mixtures of room temperature ionic liquids (in short as ILs) [C n-mim] [NTf 2] with n=4, 6, 8, 10 in methanol and ethanol over the entire range of molar fraction at a broad range of temperatures from T=293.0328.0K. The results show that the proposed ANN model provides alternative way to predict compositional viscosity successfully with highly improved accuracy and also show its potential to be extensively utilized to predict compositional viscosity over a wide range of temperatures and more complex viscosity compositions, i.e., more complex intermolecular interactions between components in which it would be hard or impossible to establish the analytical model. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of biomass as a source of fuel is on the sharp increase. In parallel with this expansion, new chemical processes and technologies are required to improve efficiency, sustainability, and profitability.
Biocatalytic and chemocatalytic methods can be combined to affect the conversion of bio-alcohols, and convert them to valuable chemical targets in an atom efficient and environmentally benign manor. Fermentation offers a useful first step in biomass conversion, as whole cell biocatalysts can provide sustained activity when fed with crude biomass. Coupling this with homogeneous and/or heterogeneous catalysis enables the preparation of a diverse product range. The transition between biocatalytic and chemocatalytic steps can be assisted by utilising ionic liquids.
Ionic liquids have potential roles in biorefineries that generate alcohols; as an extractant, reaction medium, and catalytic reagent. Underpinning the potential of ionic liquids in this area is: 1. the ability of ionic liquids to solubilize polyols and alcohols; 2. the facility to functionalise ionic liquids and tune properties; 3. the low volatility of ionic liquids.
The FP7 project GRAIL will be highlighted; this project focusses on the utilisation of glycerol formed as a by-product in biodiesel synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ternary compounds of copper indium selenide nano- and microsized materials were prepared through colloidal synthesis using an indium(III) selenide precursor and copper(I) chloride via a microwave-assisted ionothermal route. The indium(III) selenide precursor used in the reaction was formed in situ from a diphenyl diselenide precursor and chloroindate(III) ionic liquids (ILs), also via a microwave-assisted ionothermal route. The crystal structures of three intermediates, namely, CuCl2(OMe)2(H2O)){Cu(PhSeO2)2}n, [CuCl(Se2Ph2)2]n, and [C8mim]3{Cu(I)Cl2Cu(II)OCl8}n, were determined after formation through a ionothermal procedure utilizing metal-containing imidazolium ILs and a selenium precursor with conventional heating. Herein, we compare the use of microwave irradiation over conventional heating with different ILs on the stoichiometry of the resulting products. The influence of the reaction temperature, reaction time, order of addition of reagents, and variation of ILs, which were characterized using PXRD, SEM, and EDX, on the final products was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combining whole cell biocatalysis and chemocatalysis in a single reaction sequence avoids unnecessary separations, and the associated waste and energy consumption. Bacterial fermentation has been employed to convert waste glycerol from biodiesel production into 1,3-propanediol. This 1,3-propanediol can be extracted selectively from the aqueous fermentation broth using ionic liquids. 1,3-propanediol in ionic liquid solution was converted to propanal by hydrogen transfer initiated dehydration (HTID) catalysed by a Cp*IrCl2(NHC) (Cp* = pentamethylcyclopentadienyl; NHC = carbene ligand) complex. The use of an ionic liquid solvent enabled the reaction to be performed under reduced pressure, facilitating the isolation of the product, and improving the reaction selectivity. The Ir(III) catalyst in ionic liquid was found to be highly recyclable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over recent years, ionic liquids have emerged as a class of novel fluids that have inspired the development of a number of new products and processes. The ability to design these materials with specific functionalities and properties means that they are highly relevant to the growing philosophy of chemical-product design. This is particularly appropriate in the context of a chemical industry that is becoming increasingly focussed on small-volume, high-value added products with relatively short times to market. To support such product and process development, a number of tools can be utilised. A key requirement is that the tool can predict the physical properties and activity coefficients of multi-component mixtures and, if required, model the process in which the materials will be used. Multi-scale simulations that span density functional theory (DFT) to process-engineering computations can address the relevant time and length scales and have increased in usage with the availability of cheap and powerful computers. Herein we will discuss the area of engineering calculations relating to the design of ionic liquid processes, that is, the computational tools that bridge this gap and allow for process simulation tools to utilise and assist in the design of ionic liquids. It will be shown that, at present, it is possible to use available tools to estimate many important properties of ionic liquids and mixtures containing them with a sufficient level of accuracy for preliminary design and selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knowledge of thermodynamic high-pressure speed of sound in ionic liquids (ILs) is a crucial way either to study the nature of the molecular interactions, structure and packing effects or to determine other key thermodynamic properties of ILs essential for their applications in any chemical and industrial processes. Herein, we report the speed of sound as a function temperature at pressures up to 101 MPa in four ultrapure ILs: 1-propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-pentyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, and 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, taking into consideration their relaxation behavior. Additionally, to further improve the reliability of the speed of sound results, the density, isentropic compressibility, and isobaric heat capacity as a function of temperature and pressure are calculated using an acoustic method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Fourier transform infrared gas-phase method is described herein and capable of deriving the vapour pressure of each pure component of a poorly volatile mixture and determining the relative vapour phase composition for each system. The performance of the present method has been validated using two standards (naphthalene and ferrocene), and a Raoult’s plot surface of a ternary system is reported as proof-of-principle. This technique is ideal for studying solutions comprising two, three, or more organic compounds dissolved in ionic liquids as they have no measurable vapour pressures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Imidazolium-tagged bis(oxazolines) have been prepared and used as chiral ligands in the copper(II)-catalysed Diels-Alder reaction of N-acryloyl- and N-crotonoyloxazolidinones with cyclopentadiene and 1,3-cyclohexadiene in the ionic liquid 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [emim][NTf2]. A significant and substantial enhancement in the rate and enantioselectivity was achieved in [emim][NTf2] compared with dichloromethane. For example, complete conversion and enantioselectivities up to 95 % were obtained for the reaction between N-acryloyloxazolidinone and cyclopentadiene within 2 min in [emim][NTf2] whereas the corresponding reaction in dichloromethane required 60 min to reach completion and gave an ee of only 16 %. The enhanced rates obtained in the ionic liquid enabled a catalyst loading as low as 0.5 mol % to give complete conversion within 2 min while retaining the same level of enantioselectivity. The imidazolium-tagged catalysts can be recycled ten times without any loss in activity or enantioselectivity and showed much higher affinity for the ionic liquid phase during the recycle procedure than the analogous uncharged ligand.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The results detail a novel methodology for the electrochemical determination of ammonia based on its interaction with hydroquinone in DMF. It has been shown that ammonia reversibly removes protons from the hydroquinone molecules, thus facilitating the oxidative process with the emergence of a new wave at less positive potentials. The analytical utility of the proposed methodology has been examined with a linear range from 10 to 95 ppm and corresponding limit-of-detection of 4.2 ppm achievable. Finally, the response of hydroquinone in the presence of ammonia has been examined in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluormethylsulfonyl)imide, [EMIM][N(Tf)(2)]. Analogous voltammetric waveshapes to that observed in DMF were obtained, thereby confirming the viability of the method in either DMF or [EMIM][N(Tf)(2)] as solvent. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structures of liquid water and isopropanol have been studied as a function of the size of a hydrophobic patch present in a model hydrophilic surface via molecular dynamics simulations. A significant anisotropy extending into the first few solvent layers is found over the patch which suggests implications for many real-world systems in which nanoscale heterogeneity is found.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A linear cation-decorated polymeric support with tuneable surface properties and microstructure has been prepared by ring-opening metathesis polymerisation (ROMP) of a pyrrolidinium-functionalised norbornene-based monomer with cyclooctene. The derived peroxophosphotungstate-based polymer-immobilised ionic liquid phase (PIILP) catalyst is an efficient and recyclable system for the epoxidation of allylic alcohols and alkenes, with only a minor reduction in performance on successive cycles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Density, ?, viscosity, ?, and conductivity, s, measurements of binary mixtures containing the pyrrolidinium nitrate Protic Ionic Liquid (PIL) and propylene carbonate (PC), are determined at the atmospheric pressure as a function of the temperature from (283.15 to 353.15) K and within the whole composition range. The temperature dependence of both the viscosity and conductivity of each mixture exhibits a non-Arrhenius behaviour, but is correctly fitted by using the Vogel–Tamman–Fulcher (VTF) equation. In each case, the best-fit parameters, such as the pseudo activation energy, View the MathML source and ideal glass transition temperature, T0 are then extracted. The excess molar volumes VE, and viscosity deviations from the ideality, ??, of each investigated mixture were then deduced from the experimental results, as well as, their apparent molar volumes, V?, thermal expansion coefficients ap, and excess Gibbs free energies (?G*E) of activation of viscous flow. The VE, apE, ?? values are negative over the whole composition range for each studied temperature therein. According to the Walden rule, the ionicity of each mixture was then evaluated as a function of the temperature from (283.15 to 353.15) K and of the composition. Results have been then discussed in terms of molecular interactions and molecular structures in this binary mixture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The asymmetric Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene and the Mukaiyama-aldol reaction between methylpyruvate and 1-phenyl-1-trimethylsilyloxyethene have been catalysed by heterogeneous copper(II)-bis(oxazoline)-based polymer immobilised ionic liquid phase (PIILP) systems generated from a range of linear and cross linked ionic polymers. In both reactions selectivity and ee were strongly influenced by the choice of polymer. A comparison of the performance of a range of Cu(II)-bis(oxazoline)-PIILP catalyst systems against analogous supported ionic liquid phase (SILP) heterogeneous catalysts as well as their homogeneous counterparts has been undertaken and their relative merits evaluated.