39 resultados para wired best-effort networks
Resumo:
Efficient identification and follow-up of astronomical transients is hindered by the need for humans to manually select promising candidates from data streams that contain many false positives. These artefacts arise in the difference images that are produced by most major ground-based time-domain surveys with large format CCD cameras. This dependence on humans to reject bogus detections is unsustainable for next generation all-sky surveys and significant effort is now being invested to solve the problem computationally. In this paper, we explore a simple machine learning approach to real-bogus classification by constructing a training set from the image data of similar to 32 000 real astrophysical transients and bogus detections from the Pan-STARRS1 Medium Deep Survey. We derive our feature representation from the pixel intensity values of a 20 x 20 pixel stamp around the centre of the candidates. This differs from previous work in that it works directly on the pixels rather than catalogued domain knowledge for feature design or selection. Three machine learning algorithms are trained (artificial neural networks, support vector machines and random forests) and their performances are tested on a held-out subset of 25 per cent of the training data. We find the best results from the random forest classifier and demonstrate that by accepting a false positive rate of 1 per cent, the classifier initially suggests a missed detection rate of around 10 per cent. However, we also find that a combination of bright star variability, nuclear transients and uncertainty in human labelling means that our best estimate of the missed detection rate is approximately 6 per cent.
Resumo:
We study the fundamental Byzantine leader election problem in dynamic networks where the topology can change from round to round and nodes can also experience heavy {\em churn} (i.e., nodes can join and leave the network continuously over time). We assume the full information model where the Byzantine nodes have complete knowledge about the entire state of the network at every round (including random choices made by all the nodes), have unbounded computational power and can deviate arbitrarily from the protocol. The churn is controlled by an adversary that has complete knowledge and control over which nodes join and leave and at what times and also may rewire the topology in every round and has unlimited computational power, but is oblivious to the random choices made by the algorithm. Our main contribution is an $O(\log^3 n)$ round algorithm that achieves Byzantine leader election under the presence of up to $O({n}^{1/2 - \epsilon})$ Byzantine nodes (for a small constant $\epsilon > 0$) and a churn of up to \\$O(\sqrt{n}/\poly\log(n))$ nodes per round (where $n$ is the stable network size).The algorithm elects a leader with probability at least $1-n^{-\Omega(1)}$ and guarantees that it is an honest node with probability at least $1-n^{-\Omega(1)}$; assuming the algorithm succeeds, the leader's identity will be known to a $1-o(1)$ fraction of the honest nodes. Our algorithm is fully-distributed, lightweight, and is simple to implement. It is also scalable, as it runs in polylogarithmic (in $n$) time and requires nodes to send and receive messages of only polylogarithmic size per round.To the best of our knowledge, our algorithm is the first scalable solution for Byzantine leader election in a dynamic network with a high rate of churn; our protocol can also be used to solve Byzantine agreement in a straightforward way.We also show how to implement an (almost-everywhere) public coin with constant bias in a dynamic network with Byzantine nodes and provide a mechanism for enabling honest nodes to store information reliably in the network, which might be of independent interest.
Resumo:
In this paper, we study a two-phase underlay cognitive relay network, where there exists an eavesdropper who can overhear the message. The secure data transmission from the secondary source to secondary destination is assisted by two decode-and-forward (DF) relays. Although the traditional opportunistic relaying technique can choose one relay to provide the best secure performance, it needs to continuously have the channel state information (CSI) of both relays, and may result in a high relay switching rate. To overcome these limitations, a secure switch-and-stay combining (SSSC) protocol is proposed where only one out of the two relays is activated to assist the secure data transmission, and the secure relay switching occurs when the relay cannot support the secure communication any longer. This security switching is assisted by either instantaneous or statistical eavesdropping CSI. For these two cases, we study the system secure performance of SSSC protocol, by deriving the analytical secrecy outage probability as well as an asymptotic expression for the high main-to-eavesdropper ratio (MER) region. We show that SSSC can substantially reduce the system complexity while achieving or approaching the full diversity order of opportunistic relaying in the presence of the instantaneous or statistical eavesdropping CSI.
Secure D2D Communication in Large-Scale Cognitive Cellular Networks: A Wireless Power Transfer Model
Resumo:
In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multiantenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the primary base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, three wireless power transfer (WPT) policies are proposed: 1) co-operative power beacons (CPB) power transfer, 2) best power beacon (BPB) power transfer, and 3) nearest power beacon (NPB) power transfer. To characterize the power transfer reliability of the proposed three policies, we derive new expressions for the exact power outage probability. Moreover, the analysis of the power outage probability is extended to the case when PBs are equipped with large antenna arrays. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), where the receiver with the strongest channel is selected; and 2) nearest receiver selection (NRS), where the nearest receiver is selected. To assess the secrecy performance, we derive new analytical expressions for the secrecy outage probability and the secrecy throughput considering the two receiver selection schemes using the proposed WPT policies. We presented Monte carlo simulation results to corroborate our analysis and show: 1) secrecy performance improves with increasing densities of PBs and D2D receivers due to larger multiuser diversity gain; 2) CPB achieves better secrecy performance than BPB and NPB but consumes more power; and 3) BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead. A pivotal conclusion- is reached that with increasing number of antennas at PBs, NPB offers a comparable secrecy performance to that of BPB but with a lower complexity.
Resumo:
Localization is one of the key technologies in Wireless Sensor Networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints on cost and power consumption make it infeasible to equip each sensor node in the network with a Global Position System (GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use mobile anchor nodes (MANs), which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. A considerable body of research has addressed the Mobile Anchor Node Assisted Localization (MANAL) problem. However to the best of our knowledge, no updated surveys on MAAL reflecting recent advances in the field have been presented in the past few years. This survey presents a review of the most successful MANAL algorithms, focusing on the achievements made in the past decade, and aims to become a starting point for researchers who are initiating their endeavors in MANAL research field. In addition, we seek to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful advances in this research field.
Resumo:
This study considers a dual-hop cognitive inter-vehicular relay-assisted communication system where all
communication links are non-line of sight ones and their fading is modelled by the double Rayleigh fading distribution.
Road-side relays (or access points) implementing the decode-and-forward relaying protocol are employed and one of
them is selected according to a predetermined policy to enable communication between vehicles. The performance of
the considered cognitive cooperative system is investigated for Kth best partial and full relay selection (RS) as well as
for two distinct fading scenarios. In the first scenario, all channels are double Rayleigh distributed. In the second
scenario, only the secondary source to relay and relay to destination channels are considered to be subject to double
Rayleigh fading whereas, channels between the secondary transmitters and the primary user are modelled by the
Rayleigh distribution. Exact and approximate expressions for the outage probability performance for all considered RS
policies and fading scenarios are presented. In addition to the analytical results, complementary computer simulated
performance evaluation results have been obtained by means of Monte Carlo simulations. The perfect match between
these two sets of results has verified the accuracy of the proposed mathematical analysis.
Resumo:
Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods \cite{korhonen2exact, nie2014advances} tackle the problem by using $k$-trees to learn the optimal Bayesian network with tree-width up to $k$. Finding the best $k$-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative $k$-trees by introducing an informative score function to characterize the quality of a $k$-tree. To further improve the quality of the $k$-trees, we propose a probabilistic hill climbing approach that locally refines the sampled $k$-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most $k$. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods.
Resumo:
The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.
Physical Layer Security with Threshold-Based Multiuser Scheduling in Multi-antenna Wireless Networks
Resumo:
In this paper, we consider a multiuser downlink wiretap network consisting of one base station (BS) equipped with AA antennas, NB single-antenna legitimate users, and NE single-antenna eavesdroppers over Nakagami-m fading channels. In particular, we introduce a joint secure transmission scheme that adopts transmit antenna selection (TAS) at the BS and explores threshold-based selection diversity (tSD) scheduling over legitimate users to achieve a good secrecy performance while maintaining low implementation complexity. More specifically, in an effort to quantify the secrecy performance of the considered system, two practical scenarios are investigated, i.e., Scenario I: the eavesdropper’s channel state information (CSI) is unavailable at the BS, and Scenario II: the eavesdropper’s CSI is available at the BS. For Scenario I, novel exact closed-form expressions of the secrecy outage probability are derived, which are valid for general networks with an arbitrary number of legitimate users, antenna configurations, number of eavesdroppers, and the switched threshold. For Scenario II, we take into account the ergodic secrecy rate as the principle performance metric, and derive novel closed-form expressions of the exact ergodic secrecy rate. Additionally, we also provide simple and asymptotic expressions for secrecy outage probability and ergodic secrecy rate under two distinct cases, i.e., Case I: the legitimate user is located close to the BS, and Case II: both the legitimate user and eavesdropper are located close to the BS. Our important findings reveal that the secrecy diversity order is AAmA and the slope of secrecy rate is one under Case I, while the secrecy diversity order and the slope of secrecy rate collapse to zero under Case II, where the secrecy performance floor occurs. Finally, when the switched threshold is carefully selected, the considered scheduling scheme outperforms other well known existing schemes in terms of the secrecy performance and complexity tradeoff