79 resultados para supercritical condition
Resumo:
1. The risk of parasitism and infectious disease is expected to increase with population density as a consequence of positive density-dependent transmission rates. Therefore, species that encounter large fluctuations in population density are predicted to exhibit plasticity in their immune system, such that investment in costly immune defences is adjusted to match the probability of exposure to parasites and pathogens (i.e. density-dependent prophylaxis).
Resumo:
This paper studies the Demmel condition number of Wishart matrices, a quantity which has numerous applications to wireless communications, such as adaptive switching between beamforming and diversity coding, link adaptation, and spectrum sensing. For complex Wishart matrices, we give an exact analytical expression for the probability density function (p.d.f.) of the Demmel condition number, and also derive simplified expressions for the high tail regime. These results indicate that the condition of complex Wishart matrices is dominantly decided by the difference between the matrix dimension and degree of freedom (DoF), i.e., the probability of drawing a highly ill conditioned matrix decreases considerably when the difference between the matrix dimension and DoF increases. We further investigate real Wishart matrices, and derive new expressions for the p.d.f. of the smallest eigenvalue, when the difference between the matrix dimension and DoF is odd. Based on these results, we succeed to obtain an exact p.d.f. expression for the Demmel condition number, and simplified expressions for the high tail regime.
Resumo:
The rate of uptake of Endosulfan by Mytilus edulis L. exposed to pesticide concentrations of 0.1, 0.5, and 1.0 mg/l, and its subsequent elution on removal to clean sea water, was investigated. Higher residue levels were recorded for mussels exposed to higher concentrations of the pesticide, but concentration factors were reduced. There was a rapid initial fall in tissue residue levels on transfer to clean sea water due, it is suggested, to elution of Endosulfan adsorbed on particulate matter assimilated in the gut. The spawning period was prolonged at higher concentrations and, at 1.0 mg/l, the onset of spawning was delayed, possibly due to interference with gamonic action. At 0.1 mg/l, the minor protraction of the spawning period may reflect the effect of experimental tank conditions. No seasonal trend was obvious, and there was an exaggeration of the expected fall in condition in mussels exposed to higher concentrations of Endosulfan. In controls, the expected seasonal trend was reduced.
Resumo:
The first report of time-resolved resonance Raman (TR(3)) scattering in a supercritical fluid is presented. TR(3) spectra of the lowest triplet excited state (T-1) of anthracene in supercritical (SC) CO2 have been obtained over the pressure range 90-500 bar. These data have been complemented by conventional flash photolysis measurements of the excited state lifetime, transient absorbance difference, and fluorescence spectra over a similar pressure range. The spectroscopic data show systematic changes with increasing pressure; the Delta A spectra of the TI state recorded at two different temperatures display a red shift with increasing fluid pressure, which is in agreement with earlier work carried out over a smaller range of pressures. Similar shifts in the fluorescence are also observed. The vibrational frequencies of the T-1 state of anthracene are found to be relatively insensitive to applied pressure; indeed, the transient bands are readily identified by comparison with resonance Raman (RR) spectra of the T-1 state in cyclohexane solution. Small but well-defined shifts to lower cm(-1) with increasing pressure are observed in some of the vibrational bands of SC COE. The most marked change in the excited state Raman spectra is that the intensity of the T-1 anthracene features, relative to those of CO2, increases with applied pressure. The information which each of the above spectroscopic methods gives on the question of how pressure changes affect the structure and local environment of the excited state probe molecule in the SCF is discussed. Possible explanations for the observed increase in RR band intensities in terms of increased resonance Raman enhancement arising from the spectral shifts and/or the increased solubility of anthracene in CO2 with increasing pressure are also considered.
Resumo:
In attempting to expand the vocabulary of urban description and understanding, and to offer a new composite conceptual framework for a more integrated urban planning and policy, this essay addresses the informal, contested, and anchored dimensions of the urban in turn; second, it seeks to increasingly link the three within the new global context; and finally, it attempts to draw these strands together in a proposed reconceptualization of the contemporary city within a world where the global is urbanizing and the urban is globalizing.