82 resultados para subsp. bulgaricus 291


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consumption of milk and dairy products is considered one of the main routes of human exposure to Mycobacterium avium subsp. paratuberculosis (MAP). Quantitative data on MAP load in raw cows’ milk are essential starting point for exposure assessment. Our study provides this information on a regional scale, estimating the load of MAP in bulk tank milk (BTM) produced in Emilia-Romagna region (Italy). The survey was carried out on 2934 BTM samples (88.6% of the farms herein present) using two different target sequences for qPCR (f57 and IS900). Data about the performances of both qPCRs are also reported, highlighting the superior sensitivity of IS900-qPCR. Seven hundred and eighty-nine samples tested MAP-positive (apparent prevalence 26.9%) by IS900 qPCR. However, only 90 of these samples were quantifiable by qPCR. The quantifiable samples contained a median load of 32.4 MAP cells mL−1 (and maximum load of 1424 MAP cells mL−1). This study has shown that a small proportion (3.1%) of BTM samples from Emilia-Romagna region contained MAP in excess of the limit of detection (1.5 × 101 MAP cells mL−1), indicating low potential exposure for consumers if the milk subsequently undergoes pasteurization or if it is destined to typical hard cheese production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes further validation of a previously described Peptide-mediated magnetic separation (PMS)-Phage assay, and its application to test raw cows’ milk for presence of viable Mycobacterium avium subsp. paratuberculosis (MAP). The inclusivity and exclusivity of the PMS-phage assay were initially assessed, before the 50% limit of detection (LOD50) was determined and compared with those of PMS-qPCR (targeting both IS900 and f57) and PMS-culture. These methods were then applied in parallel to test 146 individual milk samples and 22 bulk tank milk samples from Johne’s affected herds. Viable MAP were detected by the PMS-phage assay in 31 (21.2%) of 146 individual milk samples (mean plaque count of 228.1 PFU/50 ml, range 6-948 PFU/50 ml), and 13 (59.1%) of 22 bulk tank milks (mean plaque count of 136.83 PFU/50 ml, range 18-695 PFU/50 ml). In contrast, only 7 (9.1%) of 77 individual milks and 10 (45.4%) of 22 bulk tank milks tested PMS-qPCR positive, and 17 (11.6%) of 146 individual milks and 11 (50%) of 22 bulk tank milks tested PMS-culture positive. The mean 50% limits of detection (LOD50) of the PMS-phage, PMS-IS900 qPCR and PMS-f57 qPCR assays, determined by testing MAP-spiked milk, were 0.93, 135.63 and 297.35 MAP CFU/50 ml milk, respectively. Collectively, these results demonstrate that, in our laboratory, the PMS-phage assay is a sensitive and specific method to quickly detect the presence of viable MAP cells in milk. However, due to its complicated, multi-step nature, the method would not be a suitable MAP screening method for the dairy industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With field, laboratory, and modeling approaches, we examined the interplay among habitat structure, intraguild predation (IGP), and parasitism in an ongoing species invasion. Native Gammarus duebeni celticus (Crustacea: Amphipoda) are often, but not always, replaced by the invader Gammarus pulex through differential IGP. The muscle-wasting microsporidian parasite Pleistophora mulleri infects the native but not the invader. We found a highly variable prevalence of P. mulleri in uninvaded rivers, with 0–91% of hosts parasitized per sample. In addition, unparasitized natives dominated fast-flowing riffle patches of river, whereas parasitized individuals dominated slower- flowing, pooled patches. We examined the survivorship of invader and native in single and mixed-species microcosms with high, intermediate, and zero parasite prevalence. G. pulex survivorship was high in all treatments, whereas G. duebeni subsp. celticus survivorship was significantly lower in the presence of the invader. Further, parasitized G. duebeni subsp. celticus experienced near-total elimination. Models of the species replacement process implied that parasite-enhanced IGP would make invasion by G. pulex more likely, regardless of habitat and parasite spatial structure. However, where heterogeneity in parasite prevalence creates a landscape of patches with different susceptibilities to invasion, G. pulex may succeed in cases where invasion would not be possible if patches were equivalent. The different responses of parasitized and unparasitized G. duebeni subsp. celticus to environmental heterogeneity potentially link landscape patterns to the success or failure of the invasion process.

Relevância:

10.00% 10.00%

Publicador: