66 resultados para static bending
Resumo:
Background: As bending free-kicks becomes the norm in modern day soccer, implications for goalkeepers have largely been ignored. Although it has been reported that poor sensitivity to visual acceleration makes it harder for expert goalkeepers to perceptually judge where the curved free-kicks will cross the goal line, it is unknown how this affects the goalkeeper's actual movements.
Methodology/Principal Findings: Here, an in-depth analysis of goalkeepers' hand movements in immersive, interactive virtual reality shows that they do not fully account for spin-induced lateral ball acceleration. Hand movements were found to be biased in the direction of initial ball heading, and for curved free-kicks this resulted in biases in a direction opposite to those necessary to save the free-kick. These movement errors result in less time to cover a now greater distance to stop the ball entering the goal. These and other details of the interceptive behaviour are explained using a simple mathematical model which shows how the goalkeeper controls his movements online with respect to the ball's current heading direction. Furthermore our results and model suggest how visual landmarks, such as the goalposts in this instance, may constrain the extent of the movement biases.
Conclusions: While it has previously been shown that humans can internalize the effects of gravitational acceleration, these results show that it is much more difficult for goalkeepers to account for spin-induced visual acceleration, which varies from situation to situation. The limited sensitivity of the human visual system for detecting acceleration, suggests that curved free-kicks are an important goal-scoring opportunity in the game of soccer.
Resumo:
Automatic gender classification has many security and commercial applications. Various modalities have been investigated for gender classification with face-based classification being the most popular. In some real-world scenarios the face may be partially occluded. In these circumstances a classification based on individual parts of the face known as local features must be adopted. We investigate gender classification using lip movements. We show for the first time that important gender specific information can be obtained from the way in which a person moves their lips during speech. Furthermore our study indicates that the lip dynamics during speech provide greater gender discriminative information than simply lip appearance. We also show that the lip dynamics and appearance contain complementary gender information such that a model which captures both traits gives the highest overall classification result. We use Discrete Cosine Transform based features and Gaussian Mixture Modelling to model lip appearance and dynamics and employ the XM2VTS database for our experiments. Our experiments show that a model which captures lip dynamics along with appearance can improve gender classification rates by between 16-21% compared to models of only lip appearance.
Resumo:
Experimental static and fatigue tension-tension tests were carried out on 5HS/RTM6 composite intact coupons and coupons incorporating adhesively-bonded (FM300-2) stepped flush joints. The results show that the adhesive joint, which is widely used in repairs, significantly reduces the static strength as well as the fatigue life of the composite. Both, the static and the fatigue failure of the ‘repaired’ coupons occur at the adhesive joint and involve crack initiation and propagation. The latter is modelled using interface finite elements based on the decohezive zone approach. The material degradation in the interface constitutive law is described by a damage variable, which can evolve due to the applied loads as well as the number of fatigue cycles. The fatigue formulation, based on a published model, is adapted to fit the framework of the pseudotransient formulation that is used as a numerical tool to overcome convergence difficulties. The fatigue model requires three material parameters. Numerical tests show that a single set of these parameters can be used to recover, very accurately, the experimental S-N relationship. Sensitivity studies show that the results are not mesh dependent.
Resumo:
This paper addresses the analytical solution of the mixed-mode bending (MMB) problem. The first published solutions used a load separation in pure mode I and mode II and were applied for a crack length less than the beam half-span, a <= L. In later publications, the same mode separation was used in deriving the analytical solution for crack lengths bigger than the beam half-span, a > L. In this paper it is shown that this mode separation is not valid when a > L and in some cases may lead to very erroneous results. The correct mode separation and the corresponding analytical solutions, when a > L, are presented. Results, of force vs. displacement and force vs. crack length graphs, obtained using the existing formulation and the corrected formulation are compared. A finite element solution, which does not use mode separation, is also presented
Resumo:
Probing the functionality of materials locally by means of scanning probe microscopy (SPM) requires a reliable framework for identifying the target signal and separating it from the effects of surface morphology and instrument non-idealities, e.g. instrumental and topographical cross-talk. Here we develop a linear resolution theory framework in order to describe the cross-talk effects, and apply it for elucidation of frequency-dependent cross-talk mechanisms in piezoresponse force microscopy. The use of a band excitation method allows electromechanical/electrical and mechanical/topographic signals to be unambiguously separated. The applicability of a functional fit approach and multivariate statistical analysis methods for identification of data in band excitation SPM is explored.