72 resultados para silica coating
Resumo:
A one-pot sol-gel synthesis method has been developed for the incorporation of metal nanoparticles into mesoporous oxide thin films deposited on various plane substrates by spin-coating and on the inner surface of fused silica capillaries by dip-coating. The size, the metal loading and the stoichiometry of the metal nanoparticles could be precisely controlled by following this methodology. In the first step, polymer stabilized Pt50Sn50 and Pt90Sn10 nanoparticles were obtained by a solvent-reduction method. Then, the nanoparticles were added to a metal oxide precursor sol, which was destabilized by solvent evaporation. After calcination, the obtained materials were tested in the hydrogenation of citral in both batch and continuous modes. The highest selectivity of 30% towards the unsaturated alcohols was obtained over supported Pt90Sn10 nanoparticles with a preferential formation of the cis-isomer (nerol) due to a unique confinement of the bimetallic nanoparticles in the mesoporous framework. The selectivity towards the unsaturated alcohols was further improved to 56% over the PtRu5Sn nanoparticles supported by impregnation onto mesoporous silica films. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effect of Al incorporation and pH adjustment during hydrolysis of the silica precursor on the thermal and structural stability of ordered microporous silica films with a 2D structure is presented. The structural stability of the films was determined from a combination of LA XRD/TEM data with porosity data obtained from ethanol adsorption isotherms. Thermogravimetric analysis and MR data were used to determine the template removal and the thermal stability. Stability of aluminium incorporated silica films has further been examined in several organic solvents with different polarity. A solvent with a higher polarity interacts more strongly with the films; the long-order structure disappeared after exposure to polar solvents. After exposure to non-polar solvents, the pore size uniformity was retained after 48 h. The samples with an Al/Si ratio of 0.007 showed the smallest d-spacing shift after exposure to hexane. The stability was further tested in the hydrogenation of phenylacetylene performed in a batch reactor over 1 wt.% Pd/Si(Al)O-2/Si (Al/Si = 0.007) films at 30 degrees C and 10 bar H-2 with hexane as solvent. No deactivation was observed in two subsequent hydrogenation runs. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
An elegant way to prepare catalytically active microreactors is by applying a coating of zeolite crystals onto a metal microchannel structure. In this study the hydrothermal formation of ZSM-5 zeolitic coatings on AISI 316 stainless steel plates with a microchannel structure has been investigated at different synthesis mixture compositions. The procedures of coating and thermal treatment have also been optimized. Obtaining a uniform thickness of the coating within 0.5 mm wide microchannels requires a careful control of various synthesis variables. The role of these factors and the problems in the synthesis of these zeolitic coatings are discussed. In general, the synthesis is most sensitive to the H2O/Si ratio as well as to the orientation of the plates with respect to the gravity vector. Ratios of H2O/Si=130 and Si/template=13 were found to be optimal for the formation of a zeolitic film with a thickness of one crystal at a temperature of 130 degreesC and a synthesis time of about 35 h. At such conditions, ZSM-5 crystals were formed with a typical size of 1.5 mu mx1.5 mu mx1.0 mum and a very narrow (within 0.2 mum) crystal size distribution. The prepared samples proved to be active in the selective catalytic reduction (SCR) of NO with ammonia. The activity tests have been carried out in a plate-type microreactor. The microreactor shows no mass transfer limitations and a larger SCR reaction rate is observed in comparison with pelletized Ce-ZSM-5 catalysts; (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Novel drug delivery systems (DDS) to improve the pharmacokinetic profile of hydrophobic drugs following oral administration are an area of keen interest in drug research. An ideal DDS should not adversely affect drug activity, be capable of delivering a therapeutic dose of drug, and allow homogenous drug loading and drug release. Mesoporous silica has been proposed for this application, with ibuprofen employed as the model drug. It was hypothesised that mesoporous silica MCM-41 is capable of delivering a pharmacologically therapeutic dose of ibuprofen. Ibuprofen-loaded MCM-41 can be prepared reproducibly at a drug to carrier ratio of 30% (wt/wt). The release profile was seen to be 90% within 2 h. Initial assessment of COX-1 inhibitory activity suggests the absence of adverse effects attributable to drug-carrier interaction. The results of this study provide further evidence in support of the proposed use of mesoporous silica in drug delivery.
Resumo:
Surface characterization of amorphous silica-alumina (ASA) by COads IR, pyridine(ads) IR, alkylamine temperature-programmed desorption (TPD), Cs+ and Cu(EDA)(2)(2+) exchange, H-1 NMR, and m-xylene isomerization points to the presence of a broad range of Bronsted and Lewis acid sites. Careful interpretation of IR spectra of adsorbed CO or pyridine confirms the presence of a few very strong Bronsted acid sites (BAS), typically at concentrations lower than 10 mu mol/g. The general procedure for alkylamine TPD, which probes both Bronsted and Lewis acidity, is modified to increase the selectivity to strong Bronsted acid sites. Poisoning of the m-xylene isomerization reaction by a base is presented as a novel method to quantify strong BAS. The surface also contains a weaker form of BAS, in concentrations between 50 and 150 mu mol/g, which can be quantified by COads IR Cu(EDA)(2)(2+) exchange also probes these sites. The structure of these sites remains unclear, but they might arise from the interaction of silanol groups with strong Lewis acid Al3+ sites. The surface also contains nonacidic aluminol and silanol sites (200-400 mu mol/g) and two forms of Lewis acid sites: (i) a weaker form associated with segregated alumina domains containing five-coordinated Al, which make up the interface between these domains and the ASA phase and (ii) a stronger form, which are undercoordinated Al sites grafted onto the silica surface. The acid catalytic activity in bifunctional n-heptane hydroconversion correlates with the concentration of strong BAS. The influence of the support electronegativity on the neopentane hydrogenolysis activity of supported Pt catalysts is considerably larger than that of the support Bronsted acidity. It is argued that strong Lewis acid sites, which are present in ASA but not in gamma-alumina, are essential to transmit the Sanderson electronegativity of the oxide support to the active Pt phase.
Resumo:
Mesoporous silica grown using [3-(trimethoxysilyl)propyl]octadecyldimethylammonium chloride as the mesoporogen in the presence of Fe and Al is X-ray amorphous, but contains very small domains with features of MFI zeolite as evidenced by IR and Raman spectroscopy. When applied as a catalyst, this amorphous sample shows good performance in the selective oxidation of benzene using nitrous oxide. Addition of tetrapropylammonium as structure directing agent to the as-synthesized mesoporous silica and subsequent dry gel conversion results in the formation of hierarchical Fe/ZSM-5 zeolite. During dry gel conversion the wormhole mesostructure of the initial material is completely lost. A dominant feature of the texture after crystallization is the high interconnectivity of micropores and mesopores. Substantial redistribution of low-dispersed Fe takes place during dry gel conversion towards highly dispersed isolated Fe species outside the zeolite framework. The catalytic performance in the oxidation of benzene to phenol of these highly mesoporous zeolites is appreciably higher than that of the parent material.