77 resultados para shotgun proteomics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptidomics is a powerful set of tools for the identification, structural elucidation and discovery of novel regulatory peptides and for monitoring the degradation pathways of structurally and catalytically important proteins. Amphibian skin secretions, arising from specialized granular glands, often contain complex peptidomes containing many components of entirely novel structure and unique site-substituted analogues of known peptide families. Following the discovery that the granular gland transcriptome is present in such secretions in a PCR-amenable form, we designed a strategy for peptide structural characterization involving the integration of ‘shotgun’ cloning of cDNAs encoding peptide precursors, deduction of putative bioactive peptide structures, and confirmation of these structures using tandem MS/MS sequencing. Here, we illustrate this strategy by means of elucidation of the primary structures of nigrocin-2 homologues from the defensive skin secretions of four species of Chinese Odorrana frogs, O. schmackeri, O. livida, O. hejiangensis and O. versabilis. Synthetic replicates of the peptides were found to possess antimicrobial activity. Nigrocin-2 peptides occur widely in the skin secretions of Asian ranid frogs and in those of the Odorrana group, and are particularly well-represented and of diverse structure in some species. Integration of the molecular analytical technologies described provides a means for rapid structural characterization of novel peptides from complex natural libraries in the absence of systematic online database information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antimicrobial peptides of amphibian skin secretions are proposed to aid survival in microbe-rich environments. While many amphibians inhabit such environments, other such as the Wuyi Mountain torrent frog, Amolops wuyiensis, live in pristine waters flowing from underground mountain springs. This species thus represents an interesting model in which to study antimicrobial peptides. “Shotgun” cloning of a skin-derived cDNA library from this species identified transcripts encoding a brevinin-1 and a ranatuerin-2. Peptides with coincident molecular masses to both predicted mature peptides were identified in HPLC fractions of skin secretion. Synthetic replicates of both peptides were generated by solid-phase peptide synthesis and tested for activity using Staphylococcus aureus, Escherichia coli and Candida albicans. The brevinin was found to be broad-spectrum and potent with minimum inhibitory concentrations (MICs) of 24 µM (Sa), 5 µM (Ec) and 20 µM (Ca). In contrast, the ranatuerin was less effective and of narrower spectrum with an MIC > 200 µM for Sa, 40 µM (Ec) and 120 µM (Ca). Thus this species of amphibian that lives in a pristine environment does indeed possess at least one potent and broad-spectrum antimicrobial peptide in its skin secretion arsenal. This phenomenon could be explained in several ways. Firstly, it may represent an ancestral peptide required when the stem species inhabited microbe-rich environments. However, there is mounting evidence for the second reason, that suggests the function of such peptides is not primarily in antimicrobial defence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of Fasciola hepatica infections of livestock in the absence of vaccines depends largely on the chemical triclabendazole (TCBZ) because it is effective against immature and adult parasites. Overdependence on a single drug and improper application is considered a significant factor in increasing global reports of fluke resistant to TCBZ. The mode(s) of action and biological target(s) of TCBZ are not confirmed, delaying detection and the monitoring of early TCBZ resistance. In this study, to further understand liver fluke response to TCBZ, the soluble proteomes of TCBZ-resistant and TCBZ-susceptible isolates of F. hepatica were compared with and without in vitro exposure to the metabolically active form of the parent drug triclabendazole sulphoxide (TCBZ-SO), via two-dimensional gel electrophoresis (2-DE). Gel image analysis revealed proteins displaying altered synthesis patterns and responses both between isolates and under TCBZ-SO exposure. These proteins were identified by mass spectrometry supported by a F. hepatica expressed sequence tag (EST) data set. The TCBZ responding proteins were grouped into three categories; structural proteins, energy metabolism proteins, and “stress” response proteins. This single proteomic investigation supported the reductionist experiments from many laboratories that collectively suggest TCBZ has a range of effects on liver fluke metabolism. Proteomics highlighted differences in the innate proteome profile of different fluke isolates that may influence future therapy and diagnostics design. Two of the TCBZ responding proteins, a glutathione transferase and a fatty acid binding protein, were cloned, produced as recombinants, and both found to bind TCBZ-SO at physiologically relevant concentrations, which may indicate a role in TCBZ metabolism and resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphibian skin secretions are rich sources of biologically-active peptides with antimicrobial peptides predominating in many species. Several studies involving molecular cloning of biosynthetic precursor-encoding cDNAs from skin or skin secretions have revealed that these exhibit highly-conserved domain architectures with an unusually high degree of conserved nucleotide and resultant amino acid sequences within the signal peptides. This high degree of nucleotide sequence conservation has permitted the design of primers complementary to such sites facilitating “shotgun” cloning of skin or skin secretion-derived cDNA libraries from hitherto unstudied species. Here we have used such an approach using a skin secretion-derived cDNA library from an unstudied species of Chinese frog – the Fujian large-headed frog, Limnonectes fujianensis – and have discovered two 16-mer peptides of novel primary structures, named limnonectin-1Fa (SFPFFPPGICKRLKRC) and limnonectin-1Fb (SFHVFPPWMCKSLKKC), that represent the prototypes of a new class of amphibian skin antimicrobial peptide. Unusually these limnonectins display activity only against a Gram-negative bacterium (MICs of 35 and 70 µM) and are devoid of haemolytic activity at concentrations up to 160 µM. Thus the “shotgun” cloning approach described can exploit the unusually high degree of nucleotide conservation in signal peptide-encoding domains of amphibian defensive skin secretion peptide precursor-encoding cDNAs to rapidly expedite the discovery of novel and functional defensive peptides in a manner that circumvents specimen sacrifice without compromising robustness of data

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thioacetamide (TAA) administration is an established technique for generating rat models of liver fibrosis and cirrhosis. Oxidative stress is believed to be involved as TAA-induced liver fibrosis is initiated by thioacetamide S-oxide, which is derived from the biotransformation of TAA by the microsomal flavine-adenine dinucleotide (FAD)-containing monooxygense (FMO) and cytochrome P450 systems. A two-dimensional gel electrophoresis-mass spectrometry approach was applied to analyze the protein profiles of livers of rats administered with sublethal doses of TAA for 3, 6 and 10 weeks respectively. With this approach, 59 protein spots whose expression levels changed significantly upon TAA administration were identified, including three novel proteins. These proteins were then sorted according to their common biochemical properties and functions, so that pathways involved in the pathogenesis of rat liver fibrosis due to TAA-induced toxicity could be elucidated. As a result, it was found that TAA-administration down-regulated the enzymes of the primary metabolic pathways such as fatty acid beta-oxidation, branched chain amino acids and methionine breakdown. This phenomenon is suggestive of the depletion of succinyl-CoA which affects heme and iron metabolism. Up-regulated proteins, on the other hand, are related to oxidative stress and lipid peroxidation. Finally, these proteomics data and the data obtained from the scientific literature were integrated into an

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current clinical, laboratory or radiological parameters cannot accurately diagnose or predict disease outcomes in a range of autoimmune disorders. Biomarkers which can diagnose at an earlier time point, predict outcome or help guide therapeutic strategies in autoimmune diseases could improve clinical management of this broad group of debilitating disorders. Additionally, there is a growing need for a deeper understanding of multi-factorial autoimmune disorders. Proteomic platforms offering a multiplex approach are more likely to reflect the complexity of autoimmune disease processes. Findings from proteomic based studies of three distinct autoimmune diseases are presented and strategies compared. It is the authors' view that such approaches are likely to be fruitful in the movement of autoimmune disease treatment away from reactive decisions and towards a preventative stand point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this similar to 130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding do-mains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A 2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms. Molecular & Cellular Proteomics 9:2369-2390, 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Juvenile idiopathic arthritis (JIA) comprises a poorly understood group of chronic autoimmune diseases with variable clinical outcomes. We investigated whether the synovial fluid (SF) proteome could distinguish a subset of patients in whom disease extends to affect a large number of joints.

Methods: SF samples from 57 patients were obtained around time of initial diagnosis of JIA, labeled with Cy dyes and separated by two-dimensional electrophoresis. Multivariate analyses were used to isolate a panel of proteins which distinguish patient subgroups. Proteins were identified using MALDI-TOF mass spectrometry with expression verified by immunochemical methods. Protein glycosylation status was confirmed by hydrophilic interaction liquid chromatography.

Results: A truncated isoform of vitamin D binding protein (VDBP) is present at significantly reduced levels in the SF of oligoarticular patients at risk of disease extension, relative to other subgroups (p < 0.05). Furthermore, sialylated forms of immunopurified synovial VDBP were significantly reduced in extended oligoarticular patients (p < 0.005).

Conclusion: Reduced conversion of VDBP to a macrophage activation factor may be used to stratify patients to determine risk of disease extension in JIA patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helminth parasites (nematodes, flatworms and cestodes) infect over 1 billion of the world's population causing high morbidity and mortality. The large tissue-dwelling worms express papain-like cysteine peptidases, termed cathepsins that play important roles in virulence including host entry, tissue migration and the suppression of host immune responses. Much of our knowledge of helminth cathepsins comes from studies using flatworms or trematode (fluke) parasites. The developmentally-regulated expression of these proteases correlates with the passage of parasites through host tissues and their encounters with different host macromolecules. Recent phylogenetic, biochemical and structural studies indicate that trematode cathepsins exhibit overlapping but distinct substrate specificities due to divergence within the protease active site. Here we provide an overview of the evolution, biochemistry and structure of these important enzymes and highlight how recent advances in proteomics and gene silencing techniques are allowing researchers to probe their biological functions. We focus mainly on members of the cathepsin L gene family of the animal and human pathogen, Fasciola hepatica, because of our deep understanding of their function, biochemistry and structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zoonotic infections are among the most common on earth and are responsible for >60 per cent of all human infectious diseases. Some of the most important and well-known human zoonoses are caused by worm or helminth parasites, including species of nematodes (trichinellosis), cestodes (cysticercosis, echinococcosis) and trematodes (schistosomiasis). However, along with social, epidemiological and environmental changes, together with improvements in our ability to diagnose helminth infections, several neglected parasite species are now fast-becoming recognized as important zoonotic diseases of humans, e.g. anasakiasis, several fish-borne trematodiasis and fasciolosis. In the present review, we discuss the current disease status of these primary helminth zoonotic infections with particular emphasis on their diagnosis and control. Advances in molecular biology, proteomics and the release of helminth genome-sequencing project data are revolutionizing parasitology research. The use of these powerful experimental approaches, and their potential benefits to helminth biology are also discussed in relation to the future control of helminth infections of animals and humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After digestion of infected meat the free L1 of Trichinella spp. penetrate the intestinal mucosa where they moult to the mature adult stage. We have used proteomics to identify changes in protein secretion during in vitro culture of free T. spiralis muscle larvae under different environmental conditions, and to correlate these changes with their infectivity in mice. Muscle larvae were cultured in different media (RPMI-1640, C-199 and HBSS) under conditions of anaerobiosis, microaerobiosis and in 5% CO(2) at 37 degrees C. Following incubation the larval excretory/secretory proteins were analysed by two-dimensional gel electrophoresis and the larvae were used to orally infect naïve CD1 mice. For all culture media tested, infectivity of the L1 was preserved following incubation in anaerobic conditions. In contrast, the infectivity of worms cultured in nutrient-rich media was almost completely abolished in both microaerobiosis and in the presence of 5% CO(2). Some infectivity was retained in poor or reduced culture media. Comparative analysis of larval infectivity and protein secretion showed that loss of infectivity correlated with the appearance of non-tyvelosylated proteins that in turn may be related to the onset of moulting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nematodes Trichinella spiralis and Trichinella pseudospiralis are both intracellular parasites of skeletal muscle cells and induce profound alterations in the host cell resulting in a re-alignment of muscle-specific gene expression. While T. spiralis induces the production of a collagen capsule surrounding the host-parasite complex, T. pseudospiralis exists in a non-encapsulated form and is also characterised by suppression of the host inflammatory response in the muscle. These observed differences between the two species are thought to be due to variation in the proteins excreted or secreted (ES proteins) by the muscle larva. In this study, we use a global proteomics approach to compare the ES protein profiles from both species and to identify individual T. pseudospiralis proteins that complement earlier studies with T. spiralis. Following two-dimensional gel electrophoresis, tandem mass spectrometry was used to identify the peptide spots. In many cases identification was aided by the determination of partial peptide sequence from selected mass ions. The T. pseudospiralis spots identified included the major secreted glycoproteins and the secreted 5'-nucleotidase. Furthermore, two major groups of T. spiralis-specific proteins and several T. pseudospiralis-specific proteins were identified. Our results demonstrate the value of proteomics as a tool for the identification of ES proteins that are differentially expressed between Trichinella species and as an aid to identifying key parasite proteins that are involved in the host-parasite interaction. The value of this approach will be further enhanced by data arising out the current T. spiralis genome sequencing project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trichinella spiralis is an intracellular nematode parasite of mammalian skeletal muscle. Infection of the muscle cell leads to the formation of a host-parasite complex that results in profound alterations to the host cell and a re-alignment of muscle-specific gene expression. The role of parasite excretory-secretory (ES) proteins in mediating these effects is currently unknown, largely due to the difficulty in identifying and assigning function to individual proteins. In this study, a global proteomics approach was used to analyse the ES proteins from T. spiralis muscle larvae. Following 2-DE of ES proteins,MALDI-TOF-MS and LC-MS/MS were used to identify the peptide spots. Specific Trichinella EST databases were assembled and used to analyse the data. Despite the current absence of a Trichinella genome-sequencing project, 43 out of 52 protein spots analysed were identified and included the major secreted glycoproteins. Other novel proteins were identified from matches with sequences in the T. spiralis database. Our results demonstrate the value of proteomics as a tool for the identification of Trichinella ES proteins and in the study of the molecular mechanism underpinning the formation of the host-parasite complex during Trichinella infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 1989, a red kite Milvus milvus reintroduction programme has been underway in the United Kingdom, with 4-6 week old nestlings brought into captivity and held for 6-8 weeks before reintroduction. As scavengers, red kites may consume unretrieved game, and ingest shot or lead (Pb) fragments in their prey's flesh. We evaluated exposure to Pb in captive and wild red kites by taking blood samples from 125 captive young red kites prior to release, through analysing 264 pellets (regurgitated by wild birds) collected from under a roost site, and analysing Pb concentrations in livers and/or bones of 87 red kites found dead between 1995 and 2003. Lead isotope analyses of livers were also conducted in an effort to identify Pb exposure routes. Forty-six (36.8%) kites sampled prior to release had elevated blood Pb concentrations (201-3340 microg l(-1)). The source of this Pb was probably small fragments of lead ammunition in the carcasses of birds or mammals either fed to the nestlings by their parents or, more likely, subsequently whilst in captivity. Once released, kites were also exposed to lead shot in their food, and a minimum of 1.5-2.3% of regurgitated pellets contained Pb gunshot. Seven of 44 red kites found dead or that were captured sick and died within a few days had elevated (>6 mg kg(-1) dry weight [d.w.]) liver Pb concentrations, and six of these (14%) had concentrations of >15 mg kg(-1) d.w., compatible with fatal Pb poisoning. Post-mortem analyses indicated that two of these birds had died of other causes (poisoning by rodenticide and a banned agricultural pesticide); the remaining four (9%) probably died of Pb poisoning. Bone samples from 86 red kites showed a skewed distribution of Pb concentration, and 18 samples (21%) had Pb concentrations >20 mg kg(-1) d.w., indicating elevated exposure to Pb at some stage in the birds' life. Lead isotopic signatures (Pb (208/206); Pb (206/207)) in liver samples of the majority of kites were compatible with those found in lead shot extracted from regurgitated pellets. Lead isotope ratios found in the livers of kites with very low Pb concentrations were distinct from UK petrol Pb isotopic signatures, indicating that birds were exposed to little residual petrol Pb. We conclude that the primary source of Pb to which red kites are exposed is lead ammunition (shotgun pellets or rifle bullets), or fragments thereof, in their food sources; in some cases exposure appears sufficient to be fatal. We make recommendations to reduce Pb poisoning in both captive and wild red kites and other scavenging species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigate the skin secretion of the Madagascan Tomato Frog, Dyscophus guineti, which is characterized by its peculiarly adhesive and viscous nature, with a view toward the function of the member of the Kunitz/bovine pancreatic trypsin inhibitor family (BPTI) it is known to contain. Using “shotgun” cloning of a skin secretion-derived cDNA library, we obtained the full-length sequence of the respective precursor that encodes this trypsin inhibitor. Furthermore, we demonstrated that this enzyme has inhibitory activity against trypsin, but not against thrombin, and also has no antimicrobial activity. Moreover, we confirm that it appears to be the only bioactive peptide in the skin secretion of this species. Using these observations, we attempt to posit a role for this inhibitor. In particular, we hypothesize that the trypsin inhibitor in D. guineti (and possibly other microhylid frogs) maintains the soluble state of the skin secretion during storage in the glands. Upon discharge of the secretion, the trypsin inhibitor, which occurs in low concentrations, can no longer prevent the polymerisation process of other yet unidentified skin proteins, thereby resulting in the conversion of the secretion to its final glue-like state. Thus, the major defensive value of the skin secretion appears to be mechanical, impeding ingestion through a combination of adhesion and the body inflation typical for some microhylid frogs rather than chemical through antimicrobial activity or toxicity.