67 resultados para shell structure, buckling behavior of shell structure
Resumo:
The electrochemical reduction of the disperse azo dyes Red1, Red13 and Orange1 (Or1) was investigated in the RTILs [C(4)mim][NTf2] and [C(4)mpyrr][NTf2], and in contrast with their behavior in conventional aprotic solvents, was shown to proceed via a reversible one electron step to form stable radical anion, which is further reduced at more negative potentials to the dianion. In [C(4)mpyrr][NTf2], cleavage of the N-H bond on the secondary amine was inferred for Orange1, and the ease at which this cleavage occurred is rationalized in terms of acidity of the amine moiety. The ease of reduction was observed to decrease in the order Or1 > Red13 > Red1, and is related to the electron delocalization within the molecule and the electron withdrawing power of the substituents.
Resumo:
The syntheses of 2,2'-bipyridin-5-ylmethyl-5-(1,2-dithiolan-3-yl)pentanoate (L1) and N-(2,2'-bipyridin-5-ylmethyl)-5-(1,2-dithiolan-3-yl)pentanamide (L2) and their neutral fac carbonylrhenium(I) complexes [Re(L1)(CO)(3)Br] and [Re(L2)(CO)(3)Br] are reported. The. electronic absorption and emission spectra of the complexes are similar to the spectrum of the reference compound [Re(bipy)(CO)(3)Br] and correlate well with the density functional theory calculations undertaken. The surface-enhanced Raman spectroscopy (SERS) spectra (excited at both 532 and 785 nm) of the ligands and complexes were examined and compared to the spectrum of ethyl 5-(1,2-dithiolan-3-yl)pentanoate (L3), revealing that there is very little contribution to the spectra of these species from the dithiolated alkyl chains. The spectra are dominated by the characteristic peaks of a metalated 2,2'-bipyridyl group,arising from the silver colloid/ion complexation, and the rhenium center. The rhenium complexes show weak SERS bands related to the CO stretches and a broad band at 510 cm(-1) assigned to Re-CO stretching. Concentration dependent studies, measured by the relative intensity of several assigned peaks, indicate that, as the surface coverage increases, the bipyridine moiety lifts off the surface In the case of L1 and L2, this gives rise to complexes with silver at low concentration, enhancing the signals observed, while for the tricarbonylbromorhenium complexes of these ligands, the presence of the disulfide tether allows an enhancement in the limits of detection of these surface-borne species of 20 times in the case of [ReL2(CO)(3)Br] over [Re(bipy)(CO)(3)Br].
Resumo:
The monoanionic ligand [C6H3(CH(2)NMe(2))(2)-2,6](-), a potentially terdentate N,C,N bonding system, has been employed to synthesize a series of new ruthenium(II) complexes [Ru{C6H3(CH(2)NMe(2))(2)-2,6}X(L)] (L = PPh(3) X = Cl (2a), I (2b); L = norbornadiene (nbd), X = Cl (4), eta(1)-OSO2CF3 (5)) and [Ru{C6H3(CH(2)NMe(2))(2)-2,6}(2,2':6',2 ''-terpyridine)]Cl (3). X-ray crystal structures of 2b and 3-5 have been determined, in which the N,C,N coordination geometry with respect to the metal center is found to differ considerably. In each complex the aryldiamine ligand is terdentate, eta(3)-N,C,N-bonded as a six electron donor system. However, depending on the other ligands in the Ru(II) coordination sphere, this ligand demonstrates considerable flexibility in adopting coordination geometries which range from meridional in 3 through pseudomeridional in 2b to pseudofacial in 4 and 5. In the structures of 4 and 5 significant distortions of the aryl ring, involving bending of the six-membered ring into a boatlike conformation, are found. The different combinations of the N,C,N ligand with sets of other ligands lead to a range of metal geometries, i.e. square pyramidal in 2b, octahedral in 3, and bicapped tetrahedral in 4 and 5.
Resumo:
Migrating bats are among the most poorly understood of migratory taxa, with relatively little information available on their behavior and ecology during migration compared to other taxa. This arises because of the
Resumo:
The phase behavior of a model system of colloidal platelets and nonadsorbing polymers is studied using computer simulations and perturbation theory. The equation of state for the pure platelet reference system is obtained by Monte Carlo simulations, and the free volume fraction accessible to polymers is measured by a trial insertion method. The free volume fraction is also calculated using scaled particle theory. Subsequently, the phase diagram for platelet-polymer mixtures is calculated. For a platelet aspect ratio L/D=0.1 and a polymer to platelet size ratio d/D>0.2, we observe coexistence between two isotropic phases with different densities. For smaller polymers d/D
Resumo:
For the potential influence produced by the reinforcement/matrix interphase in particle reinforced metal matrix composites (PMMCs), a unit cell model with transition interphase was proposed. Uniaxial tensile loading was simulated and the stress/strain behavior was predicted. The results show that a transition interphase with both appropriate strength and thickness could affect the failure mode, reduce the stress concentration, and enhance the maximum strain value of the composite.
Resumo:
Reproductive performance in the high-yielding dairy cow has severely decreased in the last 40 yr. The aim of this study was to compare the effectiveness of 4 nutritional strategies in improving the reproductive performance of high-yielding dairy cows. It was hypothesized that offering cows a high-starch ration in early lactation would enhance the onset of luteal activity, and that decreasing the severity of negative energy balance in the early postcalving period would improve reproductive parameters. Nutritional regimens aimed at improving fertility were applied to 96 Holstein-Friesian dairy animals. Upon calving, animals were allocated in a balanced manner to one of 4 dietary treatments. Primiparous animals were balanced according to live weight, body condition score and calving date. Multiparous animals were balanced according to parity, previous lactation milk yield, liveweight, body condition score and calving date. Treatment 1 was based on an industry best practice diet (control) to contain 170 g of crude protein/kg of dry matter. Treatment 2 was an individual cow feeding strategy, whereby the energy balance (EB) of individual animals was managed so as to achieve a predetermined target daily EB profile (+/- 10 MJ/d). Treatment 3 was a high-starch/high-fat combination treatment, whereby an insulinogenic (high-starch) diet was offered in early lactation to encourage cyclicity and followed by a lipogenic (low-starch, high-fat) diet to promote embryo development. Treatment 4 was a low-protein diet, containing 140 g of crude protein/kg of dry matter, supplemented with protected methionine at an inclusion level of 40 g per animal per day. The nutritional strategies implemented in this study had no statistically significant effects on cow fertility measures, which included the onset of luteal activity, conception rate, in-calf rate, and the incidence of atypical cycles. The individual cow feeding strategy improved EB in early lactation but had no benefit on conception rate to first insemination. However, conception rate to second insemination, 100-d pregnancy rate (from the commencement of breeding), and overall pregnancy rate tended to be higher in this group. The high-starch/high-fat treatment tended to decrease the proportion of delayed ovulations and increase the proportion of animals cycling by d 50 postcalving. Animals that failed to conceive to first insemination had a significantly longer luteal phase in the first cycle postpartum and a longer inter-ovulatory interval in the second cycle postpartum. With regards to estrous behavior, results indicate that as the size of the sexually active group increased, the intensity of estrus and the expression of mounting or attempting to mount another cow also increased. Furthermore, cows that became pregnant displayed more intense estrous behavior than cows that failed to become pregnant.
Resumo:
The diffusion-controlled response and recovery behaviour of a naked optical film sensor (i.e., with no protective membrane) with a hyperbolic-type response [i.e., S0/S = (1 + Kc), where S is the measured value of the absorbance or luminescence intensity of one form of the sensor dye in the presence of the analyte, S0 is the observed value of S in the absence of analyte and K is a constant] to changes in analyte concentration, c, in a system under test is approximated using a simple model, and described more accurately using a numerical model; in both models it is assumed that the system under test represents an infinite reservoir. Each model predicts the variations in the response and recovery times of such an optical sensor, as a function of the final external analyte concentration, the film thickness (I) and the analyte diffusion coefficient (D). From an observed signal versus time profile for a naked optical film sensor it is shown how values for K and D/I2 can be extracted using the numerical model. Both models provide a qualitative description of the often cited asymmetric nature of the response and recovery for hyperbolic-type response naked optical film sensors. It is envisaged that the models will help in the interpretation of the response and recovery behaviour exhibited by many naked optical film sensors and might be especially apposite when the analyte is a gas.
Resumo:
Assembling aircraft stiffened panels using friction stir welding offers potential to reduce fabrication time in comparison to current mechanical fastener assembly, making it economically feasible to select structurally desirable stiffener pitching and novel panel configurations. With such a departure from the traditional fabrication process, much research has been conducted on producing strong reliable welds, with less examination of the impact of welding process residual effects on panel structural behaviour and the development of appropriate design methods. This article significantly expands the available panel level compressive strength knowledge, demonstrating the strength potential of a welded aircraft panel with multiple lateral and longitudinal stiffener bays. An accompanying computational study has determined the most significant process residual effects that influence panel strength and the potential extent of panel degradation. The experimental results have also been used to validate a previously published design method, suggesting accurate predictions can be made if the conventional aerospace design methods are modified to acknowledge the welding altered panel properties.