39 resultados para shape memory alloy


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Laser welding is an important process for fabricating complex components involving NiTi shape memory
alloy. As welding is a thermal process, the amount of heat input and the rate of cooling have significant
impact on the microstructure and hence the resultant characteristics of NiTi. In this study, the effect of
laser welding and post-weld-annealing from 573 K to 1173 K on the thermal phase transformation behaviors,
tensile deformation and micro-hardness characteristics of the laser-welded NiTi thin foils were investigated.
It was found that the as-welded sample exhibited inferior super-elasticity compared to the base
material, and the super-elasticity could be partially restored by annealing at 573 K. On the other hand,
annealing of the weldment above the recrystallization temperature would lower the super-elasticity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Shape memory NiTi alloys have been used extensively for medical device applications such as orthopedic, dental, vascular and cardiovascular devices on account of their unique shape memory effect (SME) and super-elasticity (SE). Laser welding is found to be the most suitable method used to fabricate NiTi-based medical components. However, the performance of laser-welded NiTi alloys under corrosive environments is not fully understood and a specific focus on understanding the corrosion fatigue behaviour is not evident in the literature. This study reveals a comparison of corrosion fatigue behaviour of laser-welded and bare NiTi alloys using bending rotation fatigue (BRF) test which was integrated with a specifically designed corrosion cell. The testing environment was Hanks’ solution (simulated body fluid) at 37.5oC. Electrochemical impedance spectroscopic (EIS) measurement was carried out to monitor the change of corrosion resistance at different periods during the BRF test. Experiments indicate that the laser-welded NiTi alloy would be more susceptible to the corrosion fatigue attack than the bare NiTi alloy. This finding can serve as a benchmark for the product designers and engineers to determine the factor of safety of NiTi medical devices fabricated using laser welding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NiTi wires and their weldments are commonly used in micro-electro-mechanical systems (MEMS), and in such applications, cyclic loading are commonly encountered. In this paper, the bending-rotation fatigue (BRF) test was used to study the bending fatigue behavior of NiTi wire laser weldment in the small-strain regime. The fracture mechanism, which includes crack initiation, crack growth and propagation of the weldment in the BRF test, was investigated with the aid of SEM fractography and discussed in terms of the microstructure. It was found that crack initiation was primarily surface-condition dependent. The cracks were found to initiate at the surface defects at the weld zone (WZ) surface, and the crack propagation was assisted by the gas inclusions in the WZ. The weldment was finally fractured in a ductile manner. The fatigue life was found to decrease with increasing surface strain and also with increasing bending frequency (controlled by the rotational speed in the BRF test). In comparison, the fatigue life of the unwelded NiTi wires was higher than their welded counterparts at all strain levels and bending frequencies. The decrease in fatigue resistance of the weldment could be attributed to the surface and microstructural defects introduced during laser welding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study the tensile and super-elastic behaviours of laser-welded NiTi wires in Hanks’ solution at open-circuit potential (OCP) were investigated using tensile and cyclic slow-strain-rate tests (SSRT). In comparison with NiTi weldment tested in oil (non-corrosive environment), the weldment in Hanks’ solution suffered from obvious degradation in the tensile properties as evidenced by lower tensile strength, reduced maximum elongation, and a brittle fracture mode. Moreover, a larger residual strain was observed in the weldment after stress–strain cycles in Hanks’ solution. In addition to the microstructural defects resulting from the welding process, the inferior tensile and super-elastic behaviours of the NiTi weldment in Hanks’ solution could be attributed to the trapping of a large amount of hydrogen in the weld zone and heat-affected zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a combination of experimental and computational techniques, changes in the domain structures seen infreestanding single-crystal platelets of BaTiO3 have been described in terms of a second-order phase transition.The transition is driven by the change in the length-to-width ratio of the platelet sidewalls and results in a symmetrybreaking of a complex, quadrant domain pattern. The phenomenon can be described by a Landau formalism inwhich (1) the order parameter is not the polarization but rather is the degree to which the domain pattern becomesoff-centered, and (2) the shape anisotropy of the platelet substitutes for temperature in the conventional Landauexpansion as the controlling thermodynamic variable. Bistability, in terms of the direction in which the domainpattern moves off center, coupled with the spontaneous macroscopic polarization and toroidal moment that resultfrom this off-centering, prompt the possibility of a new form of memory storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on work in developing a finite element (FE) based die shape optimisation for net-shape forging of 3D aerofoil blades for aeroengine applications. Quantitative representations of aerofoil forging tolerances were established to provide a correlation between conventional dimensional and shape specifications in forging production and those quantified in FE simulation. A new direct compensation method was proposed, employing variable weighting factors to minimise the total forging tolerances in forging optimisation computations. A surface approximation using a B-spline surface was also developed to ensure improved die surface quality for die shape representation and design. For a Ni-alloy blade test case, substantial reduction in dimensional and shape tolerances was achieved using the developed die shape optimisation system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Influence diagrams are intuitive and concise representations of structured decision problems. When the problem is non-Markovian, an optimal strategy can be exponentially large in the size of the diagram. We can avoid the inherent intractability by constraining the size of admissible strategies, giving rise to limited memory influence diagrams. A valuable question is then how small do strategies need to be to enable efficient optimal planning. Arguably, the smallest strategies one can conceive simply prescribe an action for each time step, without considering past decisions or observations. Previous work has shown that finding such optimal strategies even for polytree-shaped diagrams with ternary variables and a single value node is NP-hard, but the case of binary variables was left open. In this paper we address such a case, by first noting that optimal strategies can be obtained in polynomial time for polytree-shaped diagrams with binary variables and a single value node. We then show that the same problem is NP-hard if the diagram has multiple value nodes. These two results close the fixed-parameter complexity analysis of optimal strategy selection in influence diagrams parametrized by the shape of the diagram, the number of value nodes and the maximum variable cardinality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The year 1916 witnessed two events that would profoundly shape both
politics and commemoration in Ireland over the course of the following
century. Although the Easter Rising and the Battle of the Somme were
important historical events in their own right, their significance also lay
in how they came to be understood as iconic moments in the emergence
of Northern Ireland and the Irish Republic. Adopting an interdisciplinary
approach drawing on history, politics, anthropology and cultural
studies, this volume explores how the memory of these two foundational
events has been constructed, mythologised and revised over the course
of the past century. The aim is not merely to understand how the Rising
and Somme came to exert a central place in how the past is viewed in
Ireland, but to explore wider questions about the relationship between
history, commemoration and memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The standard “Kittel Law” for the thickness and shape of ferroelectric, ferroelastic, or ferromagnet domains assumes mechanical equilibrium. The present paper shows that such domains may be highly nonequilibrium, with unusual thicknesses and shapes. In lead germanate and multiferroic lead zirconate titanate iron tantalate domain wall instabilities resemble hydrodynamics (Richtmyer–Meshkov and Helfrich–Hurault, respectively).