65 resultados para salicylic acid methyl ester
Resumo:
Chemical, nonenzymatic modification of protein and lipids by reducing sugars, such as glucose, is thought to contribute to age-related deterioration in tissue protein and cellular membranes and to the pathogenesis of diabetic complications. This report describes the synthesis and quantification of N-(glucitol)ethanolamine (GE) and N-(carboxymethyl)serine (CMS), two products of nonenzymatic modification of aminophospholipids. GE is the product of reduction and hydrolysis of glycated phosphatidylethanolamine (PE), while CMS is formed through reaction of phosphatidylserine (PS) with products of oxidation of either carbohydrate (glycoxidation) or lipids (lipoxidation). Gas chromatography/mass spectrometry procedures for quantification of the N,O-acetyl methyl ester derivatives of the modified head groups were developed. GE and CMS were quantified in samples of PE and PS, respectively, following incubation with glucose in vitro; CMS formation was dependent on the presence of oxygen during the incubation. Both GE and CMS were detected and quantified in lipid extracts of human red blood cell membranes. The content of GE, but not CMS, was increased in the lipids from diabetic compared to nondiabetic subjects. Measurement of these modified lipids should prove useful for assessing the role of carbonyl-amine reactions of aminophospholipids in aging and age-related diseases.
Resumo:
Experiments were undertaken to determine if nitric oxide (NO) plays a role in regulation of basal blood flow in the oral cavity of pentobarbital anesthetized cats and, if so, to quantify this effect using dose-response relationships. Blood flow was continuously measured from the surface of the tongue and mandibular gingiva (laser-Doppler flowmetry) and from the lingual artery (ultrasonic flowmetry). Cardiovascular parameters also were recorded. Administration of the nonselective inhibitor of nitric oxide synthase (NOS), L-NAME (0.08-20 mg/kg i.v.), produced a dose-related increase of blood pressure associated with decreases of blood flow at all three measurement sites. Maximal blood flow depression of 50-60% was seen 30-60 min after administration of 1.25 mg/kg of L-NAME. D-NAME (1.25 mg/kg i.v.) was inactive at all sites. Subsequent administration of L-arginine partially reversed effects of L-NAME in the lingual artery and tongue, but not in the gingival circulation. The neuronally selective NOS inhibitor, 7-nitroindazole (7-NI, 30 mg/kg i.p.), was devoid of effect on any of the measured parameters. These results suggest that endothelial (but not neuronally derived) NO plays an important role in control of basal blood flow in oral tissues of the cat.
Resumo:
One of the difficulties with using molecularly imprinted polymers (MIPs) and other electrically insulating materials as the recognition element in electrochemical sensors is the lack of a direct path for the conduction of electrons from the active sites to the electrode. We have sought to address this problem through the preparation and characterization of novel hybrid materials combining a catalytic MIP, capable of oxidizing the template, catechol, with an electrically conducting polymer. In this way a network of "molecular wires" assists in the conduction of electrons from the active sites within the MIP to the electrode surface. This was made possible by the design of a new monomer that combines orthogonal polymerizable functionality; comprising an aniline group and a methacrylamide. Conducting films were prepared on the surface of electrodes (Au on glass) by electropolymerization of the aniline moiety. A layer of MIP was photochemically grafted over the polyaniline, via N,N'-diethyldithiocarbamic acid benzyl ester (iniferter) activation of the methacrylamide groups. Detection of catechol by the hybrid-MIP sensor was found to be specific, and catechol oxidation was detected by cyclic voltammetry at the optimized operating conditions: potential range -0.6 V to +0.8 V (vs Ag/AgCl), scan rate 50 mV/s, PBS pH 7.4. The calibration curve for catechol was found to be linear to 144 µM, with a limit of detection of 228 nM. Catechol and dopamine were detected by the sensor, whereas analogues and potentially interfering compounds, including phenol, resorcinol, hydroquinone, serotonin, and ascorbic acid, had minimal effect (=3%) on the detection of either analyte. Nonimprinted hybrid electrodes and bare gold electrodes failed to give any response to catechol at concentrations below 0.5 mM. Finally, the catalytic properties of the sensor were characterized by chronoamperometry and were found to be consistent with Michaelis-Menten kinetics. © 2009 American Chemical Society.
Resumo:
Levoglucosan (1,6-anhydro-β-d-glucopyranose) decomposition is an important step during cellulose pyrolysis and for secondary tar reactions. The mechanism of levoglucosan thermal decomposition was studied in this paper using density functional theory methods. The decomposition included direct CO bond breaking, direct CC bond breaking, and dehydration. In total, 9 different pathways, including 16 elementary reactions, were studied, in which levoglucosan serves as a reactant. The properties of the reactants, transition states, intermediates, and products for every elementary reaction were obtained. It was found that 1-pentene-3,4-dione, acetaldehyde, 2,3-dihydroxypropanal, and propanedialdehyde can be formed from the CO bond breaking decomposition reactions. 1,2-Dihydroxyethene and hydroxyacetic acid vinyl ester can be formed from the CC bond breaking decomposition reactions. It was concluded that CO bond breaking is easier than CC bond breaking due to a lower activation energy and a higher released energy. During the 6 levoglucosan dehydration pathways, one water molecule which composed of a hydrogen atom from C3 and a hydroxyl group from C2 is the preferred pathway due to a lower activation energy and higher product stability. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The use of a hydrated phosphonium ionic liquid, [P(CH<inf>2</inf>OH)<inf>4</inf>]Cl, for the extraction of microalgæ lipids for biodiesel production, was evaluated using two microalgæ species, Chlorella vulgaris and Nannochloropsis oculata. The ionic liquid extraction was compared to the conventional Soxhlet, and Bligh & Dyer, methods, giving the highest extraction efficiency in the case of C. vulgaris, at 8.1%. The extraction from N. oculata achieved the highest lipid yield for Bligh & Dyer (17.3%), while the ionic liquid extracted 12.8%. Nevertheless, the ionic liquid extraction showed high affinity to neutral/saponifiable lipids, resulting in the highest fatty acid methyl esters (FAMEs)-biodiesel yield (4.5%) for C. vulgaris. For N. oculata, the FAMEs yield of the ionic liquid and Bligh & Dyer extraction methods were similar (>8%), and much higher than for Soxhlet (<5%). The ionic liquid extraction proved especially suitable for lipid extraction from wet biomass, giving even higher extraction yields than from dry biomass, 14.9% and 12.8%, respectively (N. oculata). Remarkably, the overall yield of FAMEs was almost unchanged, 8.1% and 8.0%, for dry and wet biomass. The ionic liquid extraction process was also studied at ambient temperature, varying the extraction time, giving 75% of lipid and 93% of FAMEs recovery after thirty minutes, as compared to the extraction at 100 °C for one day. The recyclability study demonstrated that the ionic liquid was unchanged after treatment, and was successfully reused. The ionic liquid used is best described as [P(CH<inf>2</inf>OH)<inf>4</inf>]Cl·2H<inf>2</inf>O, where the water is not free, but strongly bound to the ions.
Resumo:
The bacterial plant pathogen Pseudomonas syringae causes disease in a wide range of plants. The associated decrease in crop yields results in economic losses and threatens global food security. Competition exists between the plant immune system and the pathogen, the basic principles of which can be applied to animal infection pathways. P. syringae uses a type III secretion system (T3SS) to deliver virulence factors into the plant that promote survival of the bacterium. The P. syringae T3SS is a product of the hypersensitive response and pathogenicity (hrp) and hypersensitive response and conserved (hrc) gene cluster, which is strictly controlled by the codependent enhancer-binding proteins HrpR and HrpS. Through a combination of bacterial gene regulation and phenotypic studies, plant infection assays, and plant hormone quantifications, we now report that Chp8 (i) is embedded in the Hrp regulon and expressed in response to plant signals and HrpRS, (ii) is a functional diguanylate cyclase, (iii) decreases the expression of the major pathogen-associated molecular pattern (PAMP) flagellin and increases extracellular polysaccharides (EPS), and (iv) impacts the salicylic acid/jasmonic acid hormonal immune response and disease progression. We propose that Chp8 expression dampens PAMP-triggered immunity during early plant infection.
Resumo:
Wavelet entropy assesses the degree of order or disorder in signals and presents this complex information in a simple metric. Relative wavelet entropy assesses the similarity between the spectral distributions of two signals, again in a simple metric. Wavelet entropy is therefore potentially a very attractive tool for waveform analysis. The ability of this method to track the effects of pharmacologic modulation of vascular function on Doppler blood velocity waveforms was assessed. Waveforms were captured from ophthalmic arteries of 10 healthy subjects at baseline, after the administration of glyceryl trinitrate (GTN) and after two doses of N(G)-nitro-L-arginine-methyl ester (L-NAME) to produce vasodilation and vasoconstriction, respectively. Wavelet entropy had a tendency to decrease from baseline in response to GTN, but significantly increased after the administration of L-NAME (mean: 1.60 ± 0.07 after 0.25 mg/kg and 1.72 ± 0.13 after 0.5 mg/kg vs. 1.50 ± 0.10 at baseline, p < 0.05). Relative wavelet entropy had a spectral distribution from increasing doses of L-NAME comparable to baseline, 0.07 ± 0.04 and 0.08 ± 0.03, respectively, whereas GTN had the most dissimilar spectral distribution compared with baseline (0.17 ± 0.08, p = 0.002). Wavelet entropy can detect subtle changes in Doppler blood velocity waveform structure in response to nitric-oxide-mediated changes in arteriolar smooth muscle tone.
Resumo:
BACKGROUND: Particulate matter has been shown to stimulate the innate immune system and induce acute inflammation. Therefore, while nanotechnology has the potential to provide therapeutic formulations with improved efficacy, there are concerns such pharmaceutical preparations could induce unwanted inflammatory side effects. Accordingly, we aim to examine the utility of using the proteolytic activity signatures of cysteine proteases, caspase 1 and cathepsin S (CTSS), as biomarkers to assess particulate-induced inflammation.
METHODS: Primary peritoneal macrophages and bone marrow-derived macrophages from C57BL/6 mice and ctss(-/-) mice were exposed to micro- and nanoparticulates and also the lysosomotropic agent, L-leucyl-L-leucine methyl ester (LLOME). ELISA and immunoblot analyses were used to measure the IL-1β response in cells, generated by lysosomal rupture. Affinity-binding probes (ABPs), which irreversibly bind to the active site thiol of cysteine proteases, were then used to detect active caspase 1 and CTSS following lysosomal rupture. Reporter substrates were also used to quantify the proteolytic activity of these enzymes, as measured by substrate turnover.
RESULTS: We demonstrate that exposure to silica, alum and polystyrene particulates induces IL-1β release from macrophages, through lysosomal destabilization. IL-1β secretion positively correlated with an increase in the proteolytic activity signatures of intracellular caspase 1 and extracellular CTSS, which were detected using ABPs and reporter substrates. Interestingly IL-1β release was significantly reduced in primary macrophages from ctss(-/-) mice.
CONCLUSIONS: This study supports the emerging significance of CTSS as a regulator of the innate immune response, highlighting its role in regulating IL-1β release. Crucially, the results demonstrate the utility of intracellular caspase 1 and extracellular CTSS proteolytic activities as surrogate biomarkers of lysosomal rupture and acute inflammation. In the future, activity-based detection of these enzymes may prove useful for the real-time assessment of particle-induced inflammation and toxicity assessment during the development of nanotherapeutics.
Resumo:
The influence of the poly(ethylene glycol) (PEG) plasticizer content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) (PMVE/MA) was investigated with tensile mechanical testing, thermal analysis, and attenuated total reflectance/Fourier transform infrared spectroscopy. Unplasticized films and those containing high copolymer contents were very difficult to handle and proved difficult to test. PEG with a molecular weight of 200 Da was the most efficient plasticizer. However, films cast from aqueous blends containing 10% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000 when the copolymer/plasticizer ratio was 4 : 3 and those cast from aqueous blends containing 15% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000 when the copolymer/plasticizer ratio was 2 : 1 possessed mechanical properties most closely mimicking those of a formulation we have used clinically in photodynamic therapy. Importantly, we found previously that films cast from aqueous blends containing 10% (w/w) PMVE/MA performed rather poorly in the clinical setting, where uptake of moisture from patients' skin led to reversion of the formulation to a thick gel. Consequently, we are now investigating films cast from aqueous blends containing 15% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000, where the copolymer/plasticizer ratio is 2 : 1, as possible Food and Drug Administration approved replacements for our current formulation, which must currently be used only on a named patient basis as its plasticizer, tripropylene glycol methyl ether, is not currently available in pharmaceutical grade
Resumo:
he influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the CO peak from 1708 to 1731 cm-1, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer–water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the Mw of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices.
Resumo:
The influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the C{double bond, long}O peak from 1708 to 1731 cm, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer-water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the M of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
We characterized hydrogels, prepared from aqueous blends of poly(methyl vinyl ether-co-maleic acid) (PMVE/MA) and poly(ethylene glycol) (PEG 10,000 Daltons) containing a pore-forming agent (sodium bicarbonate, NaHCO ). Increase in NaHCO content increased the equilibrium water content (EWC) and average molecular weight between crosslinks (M ) of hydrogels. For example, the %EWC was 731, 860, 1109, and 7536% and the M was 8.26, 31.64, 30.04, and 3010.00 × 10 g/mol for hydrogels prepared from aqueous blends containing 0, 1, 2, and 5% w/w of NaHCO , respectively. Increase in NaHCO content also resulted in increased permeation of insulin. After 24 h, percentage permeation was 0.94, 3.68, and 25.71% across hydrogel membranes prepared from aqueous blends containing 0, 2, and 5% w/w of NaHCO , respectively. Hydrogels containing the pore-forming agent were fabricated into microneedles (MNs) for transdermal drug delivery applications by integrating the MNs with insulin-loaded patches. It was observed that the mean amount of insulin permeating across neonatal porcine skin in vitro was 20.62% and 52.48% from hydrogel MNs prepared from aqueous blends containing 0 and 5% w/w of NaHCO . We believe that these pore-forming hydrogels are likely to prove extremely useful for applications in transdermal drug delivery of biomolecules. © 2012 Wiley Periodicals, Inc.