198 resultados para respiratory exacerbations
Resumo:
A novel recombinant respiratory syncytial virus (RSV) subunit vaccine, designated BBG2Na, was administered to 108 healthy adults randomly assigned to receive 10, 100, or 300 μg of BBG2Na in aluminum phosphate or saline placebo. Each subject received 1, 2, or 3 intramuscular injections of the assigned dose at monthly intervals. Local and systemic reactions were mild, and no evidence of harmful properties of BBG2Na was reported. The highest ELISA and virus-neutralizing (VN) antibody responses were evident in the 100- and 300-μg groups; second or third injections provided no significant boosts against RSV-derived antigens. BBG2Na induced ⩾2-fold and ⩾4-fold increases in G2Na-specific ELISA units in up to 100% and 57% of subjects, respectively; corresponding RSV-A–specific responses were 89% and 67%. Furthermore, up to 71% of subjects had ⩾2-fold VN titer increases. Antibody responses to 2 murine lung protective epitopes were also highly boosted after vaccination. Therefore, BBG2Na is safe, well tolerated, and highly immunogenic in RSV-seropositive adults
Multiple Enzymatic Activities Associated with Severe Acute Respiratory Syndrome Coronavirus Helicase
Resumo:
Severe acute respiratory syndrome coronavirus (SARS-CoV), a newly identified group 2 coronavirus, is the causative agent of severe acute respiratory syndrome, a life-threatening form of pneumonia in humans. Coronavirus replication and transcription are highly specialized processes of cytoplasmic RNA synthesis that localize to virus-induced membrane structures and were recently proposed to involve a complex enzymatic machinery that, besides RNA-dependent RNA polymerase, helicase, and protease activities, also involves a series of RNA-processing enzymes that are not found in most other RNA virus families. Here, we characterized the enzymatic activities of a recombinant form of the SARS-CoV helicase (nonstructural protein [nsp] 13), a superfamily 1 helicase with an N-terminal zinc-binding domain. We report that nsp13 has both RNA and DNA duplex-unwinding activities. SARS-CoV nsp13 unwinds its substrates in a 5'-to-3' direction and features a remarkable processivity, allowing efficient strand separation of extended regions of double-stranded RNA and DNA. Characterization of the nsp13-associated (deoxy)nucleoside triphosphatase ([dNTPase) activities revealed that all natural nucleotides and deoxynucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed slightly more efficiently than other nucleotides. Furthermore, we established an RNA 5'-triphosphatase activity for the SARS-CoV nsp13 helicase which may be involved in the formation of the 5' cap structure of viral RNAs. The data suggest that the (d)NTPase and RNA 5'-triphosphatase activities of nsp13 have a common active site. Finally, we established that, in SARS-CoV-infected Vero E6 cells, nsp13 localizes to membranes that appear to be derived from the endoplasmic reticulum and are the likely site of SARS-CoV RNA synthesis.
Resumo:
AIM: To compare early (15 days) steroid therapy and dexamethasone with inhaled budesonide in very preterm infants at risk of developing chronic lung disease. METHODS: Five hundred seventy infants from 47 neonatal intensive care units were enrolled. Criteria for enrollment included gestational age 30%. Infants were randomly allocated to 1 of 4 treatment groups in a factorial design: early (15 days) dexamethasone, and delayed selective budesonide. Dexamethasone was given in a tapering course beginning with 0.50 mg/kg/day in 2 divided doses for 3 days reducing by half until 12 days of therapy had elapsed. Budesonide was administered by metered dose inhaler and a spacing chamber in a dose of 400 microg/kg twice daily for 12 days. Delayed selective treatment was started if infants needed mechanical ventilation and >30% oxygen for >15 days. The factorial design allowed 2 major comparisons: early versus late treatment and systemic dexamethasone versus inhaled budesonide. The primary outcome was death or oxygen dependency at 36 weeks and analysis was on an intention-to-treat basis. Secondary outcome measures included death or major cerebral abnormality, duration of oxygen treatment, and complications of prematurity. Adverse effects were also monitored daily. RESULTS: There were no significant differences among the groups for the primary outcome. Early steroid treatment was associated with a lower primary outcome rate (odds ratio [OR]: 0.85; 95% confidence interval [CI]: 0.61,1.18) but even after adjustment for confounding variables the difference remained nonsignificant. Dexamethasone-treated infants also had a lower primary outcome rate (OR: 0.86; 95% CI: 0.62,1.20) but again this difference remained not significant after adjustment. For death before discharge, dexamethasone and early treatment had worse outcomes than budesonide and delayed selective treatment (OR: 1.42; 95% CI: 0.93,2.16; OR: 1.51; 95% CI: 0.99,2.30 after adjustment, respectively) with the results not quite reaching significance. Duration of supplementary oxygen was shorter in the early dexamethasone group (median: 31 days vs 40-44 days). Early dexamethasone was also associated with increased weight loss during the first 12 days of treatment (52 g vs 3 g) compared with early budesonide, but over 30 days there was no difference. In the early dexamethasone group, there was a reduced incidence of persistent ductus arteriosus (34% vs 52%-59%) and an increased risk of hyperglycemia (55% vs 29%-34%) compared with the other 3 groups. Dexamethasone was associated with an increased risk of hypertension and gastrointestinal problems compared with budesonide but only the former attained significance. CONCLUSIONS: Infants given early treatment and dexamethasone therapy had improved survival without chronic lung disease at 36 weeks compared with those given delayed selective treatment and inhaled budesonide, respectively, but results for survival to discharge were in the opposite direction; however, none of these findings attained statistical significance. Early dexamethasone treatment reduced the risk of persistent ductus arteriosus. Inhaled budesonide may be safer than dexamethasone, but there is no clear evidence that it is more or less effective
Resumo:
%0 per cent of antibiotic use in the community is for respiratory infection. this editorial considers wwh 8 out of 10 consultations for cough in general practice result inantibiotic prescribing
Resumo:
The coronavirus main protease, Mpro, is considered to be a major target for drugs suitable for combating coronavirus infections including severe acute respiratory syndrome (SARS). An HPLC-based screening of electrophilic compounds that was performed to identify potential Mpro inhibitors revealed etacrynic acid tert-butylamide (6a) as an effective nonpeptidic inhibitor. Docking studies suggested a binding mode in which the phenyl ring acts as a spacer bridging the inhibitor's activated double bond and its hydrophobic tert-butyl moiety. The latter is supposed to fit into the S4 pocket of the target protease. Furthermore, these studies revealed etacrynic acid amide (6b) as a promising lead for nonpeptidic active-site-directed Mpro inhibitors. In a fluorimetric enzyme assay using a novel fluorescence resonance energy transfer (FRET) pair labeled substrate, compound 6b showed a Ki value of 35.3 M. Since the novel lead compound does not target the S1', S1, and S2 subsites of the enzyme's substrate-binding pockets, there is room for improvement that underlines the lead character of compound 6b.