81 resultados para resident fatigue
Resumo:
Fatigue damage calculations of unidirectional polymer composites is presented applying micromechanics theory. An orthotropic micromechanical damage model is integrated with an isotropic fatigue evolution model to predict the micromechanical fatigue damage of the composite structure. The orthotropic micromechanical damage model is used to predict the orthotropic damage evolution within a single cycle. The isotropic fatigue model is used to predict the magnitude of fatigue damage accumulated as a function of the number of cycles. The advantage of using this approach is the cheap determination of model parameters since the orthotropic damage model parameters can be determined using available data from quasi-static loading tests. Decomposition of the state variables down to the constituent scale is accomplished by micromechanics theory. Phenomenological damage evolution models are then postulated for each constituent and for interphase among them. Comparison between model predictions and experimental data is presented.
Resumo:
Mechanical fatigue due to environmental loads and spectrum analysis due to launch loads of the primary structure of a low cost, low-earth orbit small satellite intended for earth observation missions are presented. The payload of the satellite under consideration is a precise optical unit to image the earth’s surface having a mass of 45 kg. 3-D Finite Element Model for the satellite structure is generated by applying substructure method. Modal analysis is required to determine natural frequencies of the satellite and define its mode shape. Then, ranking of mode shapes according to specific constraint is performed. Harmonic analysis at resonance frequencies with the highest ranking is done and cumulative fatigue damage analysis is performed. Spectrum analysis is performed for Small Sat structure to verify the satellite structure reliability under all dynamic random vibration loads applied during transportation and launch cases.
Resumo:
Thermal fatigue analysis based on 2D finite difference and 3D finite element methods is carried out to study the performance of solar panel structure during micro-satellite life time. Solar panel primary structure consists of honeycomb structure and composite laminates. The 2D finite difference (I-DEAS) model yields predictions of the temperature profile during one orbit. Then, 3D finite element analysis (ANSYS) is applied to predict thermal fatigue damage of solar panel structure. Meshing the whole structure with 2D multi-layer shell elements with sandwich option is not efficient, as it misses thermal response of the honeycomb structure. So we applied a mixed approach between 3D solid and 2D shell elements to model the solar panel structure without the sandwich option.
Resumo:
A new model for fatigue damage evolution of polymer matrix composites (PMC) is presented. The model is based on a combination of an orthotropic damage model and an isotropic fatigue evolution model. The orthotropic damage model is used to predict the orthotropic damage evolution within a single cycle. The isotropic fatigue model is used to predict the magnitude of fatigue damage accumulated as a function of the number of cycles. This approach facilitates the determination of model parameters since the orthotropic damage model parameters can be determined from available data from quasi-static-loading tests. Then, limited amount of fatigue data is needed to adjust the fatigue evolution model. The combination of these two models provides a compromise between efficiency and accuracy. Decomposition of the state variables down to the constituent scale is accomplished by micro-mechanics. Phenomenological damage evolution models are then postulated for each constituent and for the micro-structural interaction among them. Model parameters are determined from available experimental data. Comparison between model predictions and additional experimental data is presented.
Resumo:
The small-satellite thermal subsystem main function is to control temperature ranges on equipments, and payload for the orbit specified. Structure subsystem has to ensure the satellite structure integrity. Structure integrity should meet two constraints; first constraint is accepted fatigue damage due to cyclic temperature, and second one is tolerable mounting accuracy at payload and Attitude Determination and Control Subsystem (ADCS) equipments’ seats. First, thermal analysis is executed by applying finitedifference method (IDEAS) and temperature profile for satellite components case is evaluated. Then, thermal fatigue analysis is performed applying finite-element analysis (ANSYS) to calculate the resultant damage due to on-orbit cyclic stresses, and structure deformations at the payload and ADCS equipments seats.
Resumo:
Research has indicated that individuals with gynecological cancer experience severe fatigue.
Resumo:
This aim of this systematic review was to determine the prevalence and pattern of cancer-related fatigue (CRF), and identify factors associated with its development. Relevant literature was identified through an electronic database search using specified keywords. Included studies investigated CRF in adult cancer patients using a multidimensional fatigue measure. The methodological quality was assessed using six published standards. CRF is apparent both during and after anti-cancer therapy, however, the prevalence of CRF varied between studies. The variables associated with the development and persistence of CRF remain to be identified. Inconsistencies were evident in the pattern of CRF and its associated factors. This is likely to have arisen from the inherent difficulties in the measurement of a subjective sensation, further complicated by the myriad of outcome measures used. More methodologically sound research; assessing CRF from the commencement of therapy, considering all pertinent variables is needed.
Resumo:
Fatigue is a frequent complaint of women with cancer. However, the incidence of fatigue has not been well studied, in particular gynaecological cancer, which despite its prevalence has received minimal investigation.
Resumo:
The fatigue response of an epoxy matrix containing vasculature for the delivery of liquid healing agents is investigated. The release of a rapidly curing, two-part epoxy healing chemistry into the wake of a propagating crack reduces the rate of crack extension by shielding the crack tip from the full range of applied stress intensity factor. Crack propagation is studied for a variety of loading conditions, with the maximum applied stress intensity factor ranging from 62 to 84% of the quasi-static fracture toughness of the material. At the highest level of applied load, the rate of mechanical damage is so fast that the healing agents do not fully mix and polymerize, and the effect of healing is minimal. The self-healing response is most effective at impeding the slower propagating cracks, with complete crack arrest occurring at the lowest level of applied load, and reductions of 79–84% in the rate of crack extension at intermediate loads.
Resumo:
Commentators and scholars alike recognize the important role political dissatisfaction plays in the process of regime change. A considerable body of literature has used dissatisfaction with a regime and distrust in political institutions to explain political dynamics during democratization's initial phase, yet these indicators are rarely used to assess disaffection with politics in established democratic regimes. Recent research on the post-communist region has established that citizens demonstrate high levels of political alienation, and that ethnic minority communities in particular are widely dissatisfied with democratic politics, institutions and regimes. This paper uses the 2004 data from the New Baltic Barometer to analyse individual-level disaffection with politics among the minorities in the Baltic States and explores the structural roots of such disaffection. The paper draws upon interviews with political representatives of minority communities in order to understand their perceptions of opportunities to participate in decision-making. Building on quantitative and qualitative analysis, the paper concludes that disaffection with politics among both the mass of ethnic minorities and their elite groups is best explained by the misrepresentation of minority interests in post-communist Baltic polities.