33 resultados para positive versus negative emotion-based appeals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysing public sentiment about future events, such as demonstration or parades, may provide valuable information while estimating the level of disruption and disorder during these events. Social media, such as Twitter or Facebook, provides views and opinions of users related to any public topics. Consequently, sentiment analysis of social media content may be of interest to different public sector organisations, especially in the security and law enforcement sector. In this paper we present a lexicon-based approach to sentiment analysis of Twitter content. The algorithm performs normalisation of the sentiment in an effort to provide intensity of the sentiment rather than positive/negative label. Following this, we evaluate an evidence-based combining function that supports the classification process in cases when positive and negative words co-occur in a tweet. Finally, we illustrate a case study examining the relation between sentiment of twitter posts related to English Defence League and the level of disorder during the EDL related events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most important components in electrochemical storage devices (batteries and supercapacitors) is undoubtedly the electrolyte. The basic function of any electrolyte in these systems is the transport of ions between the positive and negative electrodes. In addition, electrochemical reactions occurring at each electrode/electrolyte interface are the origin of the current generated by storage devices. In other words, performances (capacity, power, efficiency and energy) of electrochemical storage devices are strongly related to the electrolyte properties, as well as, to the affinity for the electrolyte to selected electrode materials. Indeed, the formulation of electrolyte presenting good properties, such as high ionic conductivity and low viscosity, is then required to enhance the charge transfer reaction at electrode/electrolyte interface (e.g. charge accumulation in the case of Electrochemical Double Layer Capacitor, EDLC). For practical and safety considerations, the formulation of novel electrolytes presenting a low vapor pressure, a large liquid range temperature, a good thermal and chemical stabilities is also required.

This lecture will be focused on the effect of the electrolyte formulation on the performances of electrochemical storage devices (Li-ion batteries and supercapacitors). During which, a summary of the physical, thermal and electrochemical data obtained by our group, recently, on the formulation of novel electrolyte-based on the mixture of an ionic liquid (such as EmimNTf2 and Pyr14NTf2) and carbonate or dinitrile solvents will be presented and commented. The impact of the electrolyte formulation on the storage performances of EDLC and Li-ion batteries will be also discussed to further understand the relationship between electrolyte formulation and electrochemical performances. This talk will also be an opportunity to further discuss around the effects of additives (SEI builder: fluoroethylene carbonate and vinylene carbonate), ionic liquids, structure and nature of lithium salt (LiTFSI vs LiPF6) on the cyclability of negative electrode to then enhance the electrolyte formulation. For that, our recent results on TiSnSb and graphite negative electrodes will be presented and discussed, for example 1,2.

1-C. Marino, A. Darwiche1, N. Dupré, H.A. Wilhelm, B. Lestriez, H. Martinez, R. Dedryvère, W. Zhang, F. Ghamouss, D. Lemordant, L. Monconduit “ Study of the Electrode/Electrolyte Interface on Cycling of a Conversion Type Electrode Material in Li Batteries” J. Phys.chem. C, 2013, 117, 19302-19313

2- Mouad Dahbi, Fouad Ghamouss, Mérièm Anouti, Daniel Lemordant, François Tran-Van “Electrochemical lithiation and compatibility of graphite anode using glutaronitrile/dimethyl carbonate mixtures containing LiTFSI as electrolyte” 2013, 43, 4, 375-385.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Previously we identified a DNA damage response-deficient (DDRD) molecular subtype within breast cancer. A 44-gene assay identifying this subtype was validated as predicting benefit from DNA-damaging chemotherapy. This subtype was defined by interferon signaling. In this study, we address the mechanism of this immune response and its possible clinical significance.

METHODS: We used immunohistochemistry (IHC) to characterize immune infiltration in 184 breast cancer samples, of which 65 were within the DDRD subtype. Isogenic cell lines, which represent DDRD-positive and -negative, were used to study the effects of chemokine release on peripheral blood mononuclear cell (PBMC) migration and the mechanism of immune signaling activation. Finally, we studied the association between the DDRD subtype and expression of the immune-checkpoint protein PD-L1 as detected by IHC. All statistical tests were two-sided.

RESULTS: We found that DDRD breast tumors were associated with CD4+ and CD8+ lymphocytic infiltration (Fisher's exact test P < .001) and that DDRD cells expressed the chemokines CXCL10 and CCL5 3.5- to 11.9-fold more than DNA damage response-proficient cells (P < .01). Conditioned medium from DDRD cells statistically significantly attracted PBMCs when compared with medium from DNA damage response-proficient cells (P < .05), and this was dependent on CXCL10 and CCL5. DDRD cells demonstrated increased cytosolic DNA and constitutive activation of the viral response cGAS/STING/TBK1/IRF3 pathway. Importantly, this pathway was activated in a cell cycle-specific manner. Finally, we demonstrated that S-phase DNA damage activated expression of PD-L1 in a STING-dependent manner.

CONCLUSIONS: We propose a novel mechanism of immune infiltration in DDRD tumors, independent of neoantigen production. Activation of this pathway and associated PD-L1 expression may explain the paradoxical lack of T-cell-mediated cytotoxicity observed in DDRD tumors. We provide a rationale for exploration of DDRD in the stratification of patients for immune checkpoint-based therapies.