39 resultados para pollen and vegetation
Resumo:
Glacier and ice sheet retreat exposes freshly deglaciated terrain which often contains small-scale fragile geomorphological features which could provide insight into subglacial or submarginal processes. Subaerial exposure results in potentially rapid landscape modification or even disappearance of the minor–relief landforms as wind, weather, water and vegetation impacts on the newly exposed surface. Ongoing retreat of many ice masses means there is a growing opportunity to obtain high resolution geospatial data from glacier forelands to aid in the understanding of recent subglacial and submarginal processes. Here we used an unmanned aerial vehicle to capture close-range aerial photography of the foreland of Isfallsglaciären, a small polythermal glacier situated in Swedish Lapland. An orthophoto and a digital elevation model with ~2 cm horizontal resolution were created from this photography using structure from motion software. These geospatial data was used to create a geomorphological map of the foreland, documenting moraines, fans, channels and flutes. The unprecedented resolution of the data enabled us to derive morphological metrics (length, width and relief) of the smallest flutes, which is not possible with other data products normally used for glacial landform metrics mapping. The map and flute metrics compare well with previous studies, highlighting the potential of this technique for rapidly documenting glacier foreland geomorphology at an unprecedented scale and resolution. The vast majority of flutes were found to have an associated stoss-side boulder, with the remainder having a likely explanation for boulder absence (burial or erosion). Furthermore, the size of this boulder was found to strongly correlate with the width and relief of the lee-side flute. This is consistent with the lee-side cavity infill model of flute formation. Whether this model is applicable to all flutes, or multiple mechanisms are required, awaits further study.
Resumo:
We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 1C cooler, with a maximum inferred cooling of 3.7 1C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000–18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP). The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (o20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (o5 1C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.
Resumo:
In this study, palaeoenvironmental changes recorded in the top metre of a peat profile (Misten bog, East Belgium) were investigated using a multiproxy approach. Proxies include bulk density, Ti and Si content, pollen, macrofossils, d13C on specific Sphagnum stems, and d13C–d18O on Sphagnum leaves. A high-resolution chronology was generated using 210Pb measurements and 22 14C AMS dates on carefully selected Sphagnum macrofossils. d13C only records large change in mire surface wetness. This is partly due to the fact that the core was taken from the edge of a hummock, which may make it difficult to track small isotopic changes. The d13C signal seems to be dependent upon the Sphagnum species composition. For example, a change between Sphagnum section Cuspidata towards Sphagnum imbricatum causes a significant drop in the d13C values. On the whole, the C and O isotopes record two shallow pool phases during the 8th–9th and the 13th centuries. Pollen and atmospheric soil dust (ASD) fluxes records increased human occupation in the area. There may be some climatic signals in the ASD flux, but they are difficult to decipher from the increasing human impact (land clearance, agriculture) during the last millennium. The variations in the proxies are not always synchronous, suggesting different triggering factors (temperature, wetness, windiness) for each proxy. This study also emphasizes that, compared to studies dealing with pollution using geochemical proxies, palaeoclimatic inferences from peat bogs need as many proxies as possible, together with highly accurate and precise age-models, in order to better understand climate variability and their consequences during the Holocene.
Resumo:
The mid-Holocene decline of Tsuga canadensis (hereafter Tsuga) populations across eastern North America is widely perceived as a synchronous event, driven by pests/pathogens, rapid climate change, or both. Pattern identification and causal attribution are hampered by low stratigraphic density of pollen-sampling and radiometric dates at most sites, and by absence of highly resolved, paired pollen and paleoclimate records from single sediment cores, where chronological order of climatic and vegetational changes can be assessed. We present an intensely sampled (contiguous 1-cm intervals) record of pollen and water table depth (inferred from testate amoebae) from a single core spanning the Tsuga decline at Irwin Smith Bog in Lower Michigan, with high-precision chronology. We also present an intensively sampled pollen record from Tower Lake in Upper Michigan. Both sites show high-magnitude fluctuations in Tsuga pollen percentages during the pre-decline maximum. The terminal decline is dated at both sites ca. 5000 cal yr BP, some 400 years later than estimates from other sites and data compilations. The terminal Tsuga decline was evidently heterochronous across its range. A transient decline ca. 5350 cal yr BP at both sites may correspond to the terminal decline at other sites in eastern North America. At Irwin Smith Bog, the terminal Tsuga decline preceded an abrupt and persistent decline in water table depths by;200 years, suggesting the decline was not directly driven by abrupt climate change. The Tsuga decline may best be viewed as comprising at least three phases: a long-duration predecline maximum with high-magnitude and high-frequency fluctuations, followed by a terminal decline at individual sites, followed in turn by two millennia of persistently low Tsuga populations. These phases may not be causally linked, and may represent dynamics taking place at multiple temporal and spatial scales. Further progress toward understanding the phenomenon requires an expanded network of high-resolution pollen and paleoclimate chronologies.
Resumo:
In 2004 nineteen scientists from fourteen institutions in seven countries
collaborated in the landmark study described in chapter 2 (Thomas et al., 2004a). This chapter provides an overview of results of studies published subsequently and assesses how much, and why, new results differ from those of Thomas et al.
Some species distribution modeling (SDM) studies are directly comparable to the Thomas et al. estimates. Others using somewhat different methods nonetheless illuminate whether the original estimates were of the right order of magnitude. Climate similarity models (Williams et al., 2007; Williams and Jackson, 2007), biome, and vegetation dynamic models (Perry and Enright, 2006) have also been
applied in the context of climate change, providing interesting opportunities
for comparison and cross-validation with results from SDMs.
This chapter concludes with an assessment of whether the range of extinction risk estimates presented in 2004 can be narrowed, and whether the mean estimate should be revised upward or downward. To set the stage for these analyses, the chapter begins with brief reviews of advances in climate modeling and species modeling since 2004.
Resumo:
Last interglacial sediments in unglaciated Alaska and Yukon (eastern Beringia) are commonly identified by palaeoecological indicators and stratigraphic position ~2-5m above the regionally prominent Old Crow tephra (124±10ka). We demonstrate that this approach can yield erroneous age assignments using data from a new exposure at the Palisades, a site in interior Alaska with numerous exposures of last interglacial sediments. Tephrochronology, stratigraphy, plant macrofossils, pollen and fossil insects from a prominent wood-rich organic silt unit are all consistent with a last interglacial age assignment. However, six 14C dates on plant and insect macrofossils from the organic silt range from non-finite to 4.0 14C ka BP, indicating that the organic silt instead represents a Holocene deposit with a mixed-age assemblage of organic material. In contrast, wood samples from presumed last interglacial organic-rich sediments elsewhere at the Palisades, in a similar stratigraphic position with respect to Old Crow tephra, yield non-finite 14C ages. Given that local permafrost thaw since the last interglaciation may facilitate reworking of older sediments into new stratigraphic positions, minimum constraining ages based on 14C dating or other methods should supplement age assignments for last interglacial sediments in eastern Beringia that are based on palaeoecology and stratigraphic association with Old Crow tephra.
Resumo:
Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms.
Resumo:
Southern Hemisphere westerly airflow has a significant influence on the ocean–atmosphere system of the mid- to high latitudes with potentially global climate implications. Unfortunately, historic observations only extend back to the late 19th century, limiting our understanding of multi-decadal to centennial change. Here we present a highly resolved (30-year) record of past westerly wind strength from a Falkland Islands peat sequence spanning the last 2600 years. Situated within the core latitude of Southern Hemisphere westerly airflow (the so-called furious fifties), we identify highly variable changes in exotic pollen and charcoal derived from South America which can be used to inform on past westerly air strength. We find a period of high charcoal content between 2000 and 1000 cal. years BP, associated with increased burning in Patagonia, most probably as a result of higher temperatures and stronger westerly airflow. Spectral analysis of the charcoal record identifies a pervasive ca. 250-year periodicity that is coherent with radiocarbon production rates, suggesting that solar variability has a modulating influence on Southern Hemisphere westerly airflow. Our results have important implications for understanding global climate change through the late Holocene.