113 resultados para plasmonic metamaterials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By engineering the internal structure of artificial materials it is possible to reproduce effective electromagnetic properties, including some which were previously unavailable in nature. Since the first experimental demonstration of artificial composites with exotic electromagnetic properties at microwaves less than 10 years ago, metamaterials has emerged as a rapidly growing multidisciplinary branch of science and engineering. Significant efforts have been placed in scaling the response of metamaterials to optical frequencies as well as demonstrate pertinent applications of the newly available technology. In this article we review recent developments in the area of experimental realisation of electromagnetic metamaterials and their applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a possible mechanism for the generation of magnetic fields in negative refraction index composite metamaterials. Considering the propagation of a high-frequency modulated amplitude electric field in a left-handed material (LHM), we show that the ponderomotive interaction between the field and low-frequency potential distributions leads to spontaneous generation of magnetic fields, whose form and properties are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from Maxwell's equations, we use the reductive perturbation method to derive a second-order and a third-order nonlinear Schrodinger equation, describing ultrashort solitons in nonlinear left-handed metamaterials. We find necessary conditions and derive exact bright and dark soliton solutions of these equations for the electric and magnetic field envelopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that aligned gold nanotube arrays capable of supporting plasmonic resonances can be used as high performance refractive index sensors in biomolecular binding reactions. A methodology to examine the sensing ability of the inside and outside walls of the nanotube structures is presented. The sensitivity of the plasmonic nanotubes is found to increase as the nanotube walls are exposed, and the sensing characteristic of the inside and outside walls is shown to be different. Finite element simulations showed good qualitative agreement with the observed behavior. Free standing gold nanotubes displayed bulk sensitivities in the region of 250 nm per refractive index unit and a signal-to-noise ratio better than 1000 upon protein binding which is highly competitive with state-of-the-art label-free sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical properties of plasmonic semiconductor devices fabricated by focused ion beam (FIB) milling deteriorate because of the amorphisation of the semiconductor substrate. This study explores the effects of combining traditional 30 kV FIB milling with 5 kV FIB patterning to minimise the semiconductor damage and at the same time maintain high spatial resolution. The use of reduced acceleration voltages is shown to reduce the damage from higher energy ions on the example of fabrication of plasmonic crystals on semiconductor substrates leading to 7-fold increase in transmission. This effect is important for focused-ion beam fabrication of plasmonic structures integrated with photodetectors, light-emitting diodes and semiconductor lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Close-packed monolayers of 20 nm Au nanoparticles are self-assembled at hexane/water interfaces and transferred to elastic substrates. Stretching the resulting nanoparticle mats provides active and reversible tuning of their plasmonic properties, with a clear polarization dependance. Both uniaxial and biaxial strains induce strong blue shifts in the plasmonic resonances. This matches theoretical simulations and indicates that plasmonic coupling at nanometer scale distances is responsible for the observed spectral tuning. Such stretch-tunable metal nanoparticle mats can be exploited for the development of optical devices, such as flexible colour filters and molecular sensors. (C) 2012 American Institute of Physics. [doi:10.1063/1.3683535]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel 3D plasmonic rolls are fabricated through strain-induced self-rolling of metallic nanopore sheets attached to elastomeric thin films, with optical properties tunable by varying the size and thickness of nanopores, and dynamically by light irradiation.