72 resultados para plants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of agricultural intensification (AI) on biodiversity are often assessed on the plot scale, although processes determining diversity also operate on larger spatial scales. Here, we analyzed the diversity of vascular plants, carabid beetles, and birds in agricultural landscapes in cereal crop fields at the field (n = 1350), farm (n = 270), and European-region (n = 9) scale. We partitioned diversity into its additive components alpha, beta, and gamma, and assessed the relative contribution of beta diversity to total species richness at each spatial scale. AI was determined using pesticide and fertilizer inputs, as well as tillage operations and categorized into low, medium, and high levels. As AI was not significantly related to landscape complexity, we could disentangle potential AI effects on local vs. landscape community homogenization. AI negatively affected the species richness of plants and birds, but not carabid beetles, at all spatial scales. Hence, local AI was closely correlated to beta diversity on larger scales up to the farm and region level, and thereby was an indicator of farm-and region-wide biodiversity losses. At the scale of farms (12.83-20.52%) and regions (68.34-80.18%), beta diversity accounted for the major part of the total species richness for all three taxa, indicating great dissimilarity in environmental conditions on larger spatial scales. For plants, relative importance of alpha diversity decreased with AI, while relative importance of beta diversity on the farm scale increased with AI for carabids and birds. Hence, and in contrast to our expectations, AI does not necessarily homogenize local communities, presumably due to the heterogeneity of farming practices. In conclusion, a more detailed understanding of AI effects on diversity patterns of various taxa and at multiple spatial scales would contribute to more efficient agri-environmental schemes in agroecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of burning and grazing on plant, ground beetle and spider species was investigated experimentally in stands of varying ages (burnt in 1982 and 1988 and unburnt plots) on an area of heather moorland in County Antrim, north-east Ireland. Burning initiated complex succession pathways which appear to have characteristic plant and invertebrate species associations. Removal of Calluna dominance initiated a period of high plant species diversity. Investigation of initial post-fire regeneration suggested that the frequency of occurrence of plant species changed over time and was affected by grazing. Grouping of species by the position of their renewal bud, i.e. their life-form, did not account for all observed interspecific variation. The dominant species after burning were Eriophorum vaginatum, E. angustifolium and Vaccinium myrtillus. Studies of vegetation canopy structure showed that, even with the exclusion of the main grazing herbivores, Calluna will not re-establish itself as the dominant species until several years after burning. The ground beetle Nebria salina was trapped more often on plots burnt in 1988 than on unburnt plots or those burnt in 1982. In comparison, Pterostichus niger and Carabus granulatus were trapped in greater numbers on plots burnt in 1982 than on unburnt plots and plots burnt in 1988. The large species Carabus problematicus and Carabus glabratus were trapped in greater numbers on unburnt plots. Similarly, more of the spiders Ceratinella brevipes and Centromerita concinna were trapped on the plots burnt in 1982. In comparison, Lepthyphantes zimmermanni and Robertus lividus were trapped more often on unburnt plots than on plots burnt in 1982 and 1988. Results are discussed with respect to the importance of the continuation of traditional heathland management practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uptake and translocation into shoots of arsenate, methylarsonate (MA), and dimethylarsinate (DMA) by 46 different plant species were studied. The plants (n = 3 per As species) were exposed for 24 h to 1 mg of As per litre under identical conditions. Total arsenic was measured in the roots and the shoots by acid digestion and inductively coupled plasma mass spectrometry from which, besides total As values, root absorption factors and shoot-to-root transfer factors were calculated. As uptake into the root for the different plant species ranged from 1.2 to 95 (mu g of As per g of dry weight) for As-V, from 0.9 to 44 for MA(V) and from 0.8 to 13 for DMA(V), whereas in shoots the As concentration ranged from 0.10 to 17 for As-V, 0.1 to 13 for MA(V), and 0.2 to 17 for DMA(V). The mean root absorption factor for As-V (1.2 to 95%) was five times higher than for DMA(V) (0.8 to 13%) and 2.5 times higher than for MA(V) (0.9 to 44%). Although the uptake of arsenic in the form of As-V was significantly higher than that of MA(V) and DMA(V), the translocation of the methylated species was more efficient in most plant species studied. Thus, an exposure of plants to DMA(V) or MA(V) can result in higher arsenic concentrations in the shoots than when exposed to As-V. Shoot-to-root transfer factors (TFs) for all plants varied with plant and arsenic species. While As-V had a median TF of 0.09, the TF of DMA(V) was nearly a factor of 10 higher (0.81). The median TF for MA(V) was in between (0.30). Although the TF for MA(V) correlates well with the TF for DMA(V), the plants can be separated into two groups according to their TF of DMA(V) in relation to their TF of As-V. One group can immobilise DMA(V) in the roots, while the other group translocates DMA(V) very efficiently into the shoot. The reason for this is as yet unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On 25 April 1998, a breach of the tailings dam of the Los Frailes pyrite mine in southwestern Spain resulted in the release of 6 million m(3) of acidic water and toxic sludge high in heavy metals. Contaminated material extended 40 km downstream, affecting agricultural land and parts of the wildlife-rich Donana Natural and National Parks, including the Entremuros, a very important area for birds. We report on the concentrations, distributions and bioavailability of zinc and cadmium in soil and vegetation from the Entremuros in November 1998 and October 1999, following 2 'cleanup' operations. Levels of Zn and Cd in soil increased significantly over this period, although this was not reflected consistently in metal concentrations in emergent macrophytes. We recommend monitoring of further cleanup attempts in order to develop means of minimizing potential impacts to wildlife in the area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selenium (Se) is an essential micronutrient for many organisms, including plants, animals and humans. As plants are the main source of dietary Se, plant Se metabolism is therefore important for Se nutrition of humans and other animals. However, the concentration of Se in plant foods varies between areas, and too much Se can lead to toxicity. As we discuss here, plant Se uptake and metabolism can be exploited for the purposes of developing high-Se crop cultivars and for plant-mediated removal of excess Se from soil or water. Here, we review key developments in the current understanding of Se in higher plants. We also discuss recent advances in the genetic engineering of Se metabolism, particularly for biofortification and phytoremediation of Se-contaminated environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular structure of a variety of novel mercury-phytochelatin complexes was evidenced in rice plants exposed to inorganic mercury (Hg2+) using RP-HPLC with simultaneous detection via ICP-MS and ES-MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic (As) is an element that is nonessential for and toxic to plants. Arsenic contamination in the environment occurs in many regions, and, depending on environmental factors, its accumulation in food crops may pose a health risk to humans.Recent progress in understanding the mechanisms of As uptake and metabolism in plants is reviewed here. Arsenate is taken up by phosphate transporters. A number of the aquaporin nodulin26-like intrinsic proteins (NIPs) are able to transport arsenite,the predominant form of As in reducing environments. In rice (Oryza sativa), arsenite uptake shares the highly efficient silicon (Si) pathway of entry to root cells and efflux towards the xylem. In root cells arsenate is rapidly reduced to arsenite, which is effluxed to the external medium, complexed by thiol peptides or translocated to shoots. One type of arsenate reductase has been identified, but its in planta functions remain to be investigated. Some fern species in the Pteridaceae family are able to hyperaccumulate As in above-ground tissues. Hyperaccumulation appears to involve enhanced arsenate uptake, decreased arsenite-thiol complexation and arsenite efflux to the external medium, greatly enhanced xylem translocation of arsenite, and vacuolar sequestration of arsenite in fronds. Current knowledge gaps and future research directions are also identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The weakest step in the analytical procedure for speciation analysis is extraction from a biological material into an aqueous solution which undergoes HPLC separation and then simultaneous online detection by elemental and molecular mass spectrometry (ICP-MS/ES-MS). This paper describes a study to determine the speciation of arsenic and, in particular, the arsenite phytochelatin complexes in the root from an ornamental garden plant Thunbergia alata exposed to 1 mg As L(-1) as arsenate. The approach of formic acid extraction followed by HPLC-ES-MS/ICP-MS identified different As(III)-PC complexes in the extract of this plant and made their quantification via sulfur (m/z 32) and arsenic (m/z 75) possible. Although sulfur sensitivity could be significantly increased when xenon was used as collision gas in ICP-qMS, or when HR-ICP-MS was used in medium resolution, the As:S ratio gave misleading results in the identification of As(III)-PC complexes due to the relatively low resolution of the chromatography system in relation to the variety of As-peptides in plants. Hence only the parallel use of ES-MS/ICP-MS was able to prove the occurrence of such arsenite phytochelatin complexes. Between 55 and 64% of the arsenic was bound to the sulfur of peptides mainly as As(III)(PC(2))(2), As(III)(PC(3)) and As(III)(PC(4)). XANES (X-ray absorption near-edge spectroscopy) measurement, using the freshly exposed plant root directly, confirmed that most of the arsenic is trivalent and binds to S of peptides (53% As-S) while 38% occurred as arsenite and only 9% unchanged as arsenate. EXAFS data confirmed that As-S and As-O bonds occur in the plants. This study confirms, for the first time, that As-peptides can be extracted by formic acid and chromatographically separated on a reversed-phase column without significant decomposition or de-novo synthesis during the extraction step.