636 resultados para planetary rovers
Si X emission lines in spectra obtained with the Solar EUV Rocket Telescope and Spectrograph (SERTS)
Resumo:
New R-matrix calculations of electron impact excitation rates in Ca XV are used to derive theoretical electron density diagnostic emission line intensity ratios involving 2s(2)2p(2)- 2s2p(3) transitions, specifically R-1 = I(208.70 Angstrom)/I(200.98 Angstrom), R-2 = I(181.91 Angstrom)/I(200.98 Angstrom), and R-3 = I(215.38 Angstrom)/I(200.98 Angstrom), for a range of electron temperatures (T-e = 10(6.4)-10(6.8) K) and densities (Ne = 10(9)-10(13) cm(-3)) appropriate to solar coronal plasmas. Electron densities deduced from the observed values of R-1, R-2, and R-3 for several solar flares, measured from spectra obtained with the Naval Research Laboratory's S082A spectrograph on board Skylab, are found to be consistent. In addition, the derived electron densities are in excellent agreement with those determined from line ratios in Ca XVI, which is formed at a similar electron temperature to Ca XV. These results provide some experimental verification for the accuracy of the line ratio calculations, and hence the atomic data on which they are based. A set of eight theoretical Ca XV line ratios involving 2s(2)2p(2)-2s2p(3) transitions in the wavelength range similar to140-216 Angstrom are also found to be in good agreement with those measured from spectra of the TEXT tokamak plasma, for which the electron temperature and density have been independently determined. This provides additional support for the accuracy of the theoretical line ratios and atomic data.
Resumo:
This paper investigates evidence for palaeoclimatic changes during the period ca. 1500-500 cal. yr BC through peat humification studies on seven Irish ombrotrophic bogs. The sites are well-correlated by the identification of three mid-first millennium BC tephras, which enable the humification records at specific points in time to be directly compared. Phases of temporarily increased wetness are suggested at ca. 1300-1250 cal. yr BC, ca. 1150-1050 cal. yr BC, ca. 940 cal. yr BC and ca. 740 cal. yr BC. The last of these is confirmed to be synchronous at five sites, suggesting external forcing on a regional scale. The timing of this wet-shift is constrained by two closely dated tephras and is demonstrated to be distinct from the widely reported changes to cooler/wetter conditions associated with a solar minimum at 850-760 cal. yr BC, at which time the Irish sites appear instead to experience drier conditions. The results suggest the possibility of either non-uniform responses to solar forcing in northwest Europe at this time, or the existence of unrelated climate events in the early first millennium BC. The findings caution against the correlation of loosely dated palaeoclimate data if the effects of forcing mechanisms are to be understood.
Resumo:
Three distinct, first millennium BC tephras (BMR-190, OMH-185, GB4-150) have been recognized in Irish peat deposits, including a previously undated ash (BMR-190). We present the results of a programme of high-precision 14C wiggle-matching on a peat profile containing all three tephras from Glen West, County Fermanagh, Northern Ireland. The wiggle-match provides highly refined dates of 705-585cal. BC for BMR-190, 755-680cal. BC for OMH-185 and 800-758cal. BC for GB4-150. The tephras constitute valuable, widespread isochrones for palaeoecological research across the first millennium BC, when a prolonged 14C calibration plateau between 750 and 400 cal. BC presents a major problem to dating and correlating palaeoenvironmental events from multisite, multiproxy studies of the period.
Resumo:
The intercorrelation of palaeoclimate events from various studies is often hindered by a lack of precise chronological control. Tephra isochrons can overcome this problem by providing direct site linkages. This paper outlines a study of Holocene peat and diatomite deposits that accumulated within the floodplain of Lough Neagh, Northern Ireland. The Icelandic Hekla 4 tephra has been identified at the base of diatomite deposits at a number of sites and provides firm dating evidence for a widespread flooding event in the area at ca. 2300 BC. The evidence is consistent with other studies in Ireland and elsewhere for increased wetness at this time. The results demonstrate that the terrestrial deposits around Lough Neagh contain an important record of Holocene lake-level change. Dendrochronological evidence from the Lough Neagh area provides additional information about lake-level fluctuations over the past two millennia.