40 resultados para planet-star interactions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star of 1.75 R sun in the Northern hemisphere, and the independent discovery of HAT-P-30b/WASP-51b, a new planet in the Northern hemisphere. Using WASP, RISE, Faulkes Telescope South, and TRAPPIST photometry, with CORALIE, SOPHIE, and NOT spectroscopy, we determine that WASP-35b has a mass of 0.72 ± 0.06 MJ and radius of 1.32 ± 0.05RJ , and orbits with a period of 3.16 days, WASP-48b has a mass of 0.98 ± 0.09 MJ , radius of 1.67 ± 0.10 RJ , and orbits in 2.14 days, while HAT-P-30b/WASP-51b, with an orbital period of 2.81 days, is found to have a mass of 0.76 ± 0.05 MJ and radius of 1.42 ± 0.03 RJ , agreeing with values of 0.71 ± 0.03 MJ and 1.34 ± 0.07 RJ reported for HAT-P-30b.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the discovery and initial characterization of Qatar-1b, a hot Jupiter-orbiting metal-rich K dwarf star, the first planet discovered by the Qatar Exoplanet Survey. We describe the strategy used to select candidate transiting planets from photometry generated by the Qatar Exoplanet Survey camera array. We examine the rate of astrophysical and other false positives found during the spectroscopic reconnaissance of the initial batch of candidates. A simultaneous fit to the follow-up radial velocities and photometry of Qatar-1b yields a planetary mass of 1.09 ± 0.08 MJ and a radius of 1.16 ± 0.05 RJ. The orbital period and separation are 1.420 033 ± 0.000 016 d and 0.023 43 ± 0.000 26 au for an orbit assumed to be circular. The stellar density, effective temperature and rotation rate indicate an age greater than 4 Gyr for the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Star formation often occurs within or nearby stellar clusters. Irradiation by nearby massive stars can photoevaporate protoplanetary disks around young stars (so-called proplyds) which raises questions regarding the ability of planet formation to take place in these environments. We investigate the two-dimensional physical and chemical structure of a protoplanetary disk surrounding a low-mass (T Tauri) star which is irradiated by a nearby massive O-type star to determine the survivability and observability of molecules in proplyds. Compared with an isolated star-disk system, the gas temperature ranges from a factor of a few (in the disk midplane) to around two orders of magnitude (in the disk surface) higher in the irradiated disk. Although the UV flux in the outer disk, in particular, is several orders of magnitude higher, the surface density of the disk is sufficient for effective shielding of the disk midplane so that the disk remains predominantly molecular in nature. We also find that non-volatile molecules, such as HCN and H2O, are able to freeze out onto dust grains in the disk midplane so that the formation of icy planetesimals, e.g., comets, may also be possible in proplyds. We have calculated the molecular line emission from the disk assuming LTE and determined that multiple transitions of atomic carbon, CO (and isotopologues, 13CO and C18O), HCO+, CN, and HCN may be observable with ALMA, allowing characterization of the gas column density, temperature, and optical depth in proplyds at the distance of Orion (˜400 pc).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nearby A4-type star Fomalhaut hosts a debris belt in the form of an eccentric ring, which is thought to be caused by dynamical influence from a giant planet companion. In 2008, a detection of a point source inside the inner edge of the ring was reported and was interpreted as a direct image of the planet, named Fomalhaut b. The detection was made at 600-800nm, but no corresponding signatures were found in the near-infrared range, where the bulk emission of such a planet should be expected. Here, we present deep observations of Fomalhaut with Spitzer/IRAC at 4.5 µm, using a novel point-spread function subtraction technique based on angular differential imaging and Locally Optimized Combination of Images, in order to substantially improve the Spitzer contrast at small separations. The results provide more than an order ofmagnitude improvement in the upper flux limit of Fomalhaut b and exclude the possibility that any flux from a giant planet surface contributes to the observed flux at visible wavelengths. This renders any direct connection between the observed light source and the dynamically inferred giant planet highly unlikely. We discuss several possible interpretations of the total body of observations of the Fomalhaut system and find that the interpretation that best matches the available data for the observed source is scattered light from a transient or semi-transient dust cloud. © 2012 The American Astronomical Society. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kepler-10b was the first rocky planet detected by the Kepler satellite and confirmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was
insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was statistically validated, but the radial velocities were only
good enough to set an upper limit of 20 M⊕ for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph
on the Telescopio Nazionale Galileo on La Palma. In total, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determination for Kepler-10b to 15%. With a mass of 3.33 ± 0.49 M⊕ and an updated radius of 1.47+0.03 −0.02 R⊕, Kepler-10b has a density of 5.8 ± 0.8 g cm−3, very close to the value predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 ± 1.9 M⊕ and radius of 2.35+0.09 −0.04 R⊕, Kepler-10c has a density of 7.1 ± 1.0 g cm−3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 +/- 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H]= -0.16 +/- 0.08 and has a radius R-star = 0.716 +/- 0.024 R-circle dot and mass M-star = 0.775 +/- 0.027M(circle dot). The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of R-p = 2.53 +/- 0.18 R-circle plus. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 +/- 1.33 M-circle plus planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysical systems, being at work in the outflows emerging from hot stars or from the accretion discs of cataclysmic variables, massive young stars and active galactic nuclei. In this work, a new radiation hydrodynamical approach to model line-driven hot-star winds is presented. By coupling a Monte Carlo radiative transfer scheme with a finite volume fluid dynamical method, line-driven mass outflows may be modelled self-consistently, benefiting from the advantages of Monte Carlo techniques in treating multiline effects, such as multiple scatterings, and in dealing with arbitrary multidimensional configurations. In this work, we introduce our approach in detail by highlighting the key numerical techniques and verifying their operation in a number of simplified applications, specifically in a series of self-consistent, one-dimensional, Sobolev-type, hot-star wind calculations. The utility and accuracy of our approach are demonstrated by comparing the obtained results with the predictions of various formulations of the so-called CAK theory and by confronting the calculations with modern sophisticated techniques of predicting the wind structure. Using these calculations, we also point out some useful diagnostic capabilities our approach provides. Finally, we discuss some of the current limitations of our method, some possible extensions and potential future applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We observed 51 Peg, the first detected planet-bearing star, in a 55 ks XMM-Newton pointing and in 5 ks pointings each with Chandra HRC-I and ACIS-S. The star has a very low count rate in the XMM observation, but is clearly visible in the Chandra images due to the detectors' different sensitivity at low X-ray energies. This allows a temperature estimate for 51 Peg's corona of T⪉ 1 MK; the detected ACIS-S photons can be plausibly explained by emission lines of a very cool plasma near 200 eV. The constantly low X-ray surface flux and the flat-activity profile seen in optical Ca II data suggest that 51 Peg is a Maunder minimum star; an activity enhancement due to a Hot Jupiter, as proposed by recent studies, seems to be absent. The star's X-ray fluxes in different instruments are consistent with the exception of the HRC Imager, which might have a larger effective area below 200 eV than given in the calibration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kepler-454 (KOI-273) is a relatively bright (V = 11.69 mag), Sun-like star that hosts a transiting planet candidate in a 10.6 day orbit. From spectroscopy, we estimate the stellar temperature to be 5687 ± 50 K, its metallicity to be [m/H] = 0.32 ± 0.08, and the projected rotational velocity to be v sin i <2.4 km s-1. We combine these values with a study of the asteroseismic frequencies from short cadence Kepler data to estimate the stellar mass to be , the radius to be 1.066 ± 0.012 Ro, and the age to be Gyr. We estimate the radius of the 10.6 day planet as 2.37 ± 0.13 R. Using 63 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 36 observations made with the HIRES spectrograph at the Keck Observatory, we measure the mass of this planet to be 6.8 ± 1.4 M. We also detect two additional non-transiting companions, a planet with a minimum mass of 4.46 ± 0.12 MJ in a nearly circular 524 day orbit and a massive companion with a period >10 years and mass >12.1 MJ. The 12 exoplanets with radii ⊕ and precise mass measurements appear to fall into two populations, with those ⊕ following an Earth-like composition curve and larger planets requiring a significant fraction of volatiles. With a density of 2.76 ± 0.73 g cm-3, Kepler-454b lies near the mass transition between these two populations and requires the presence of volatiles and/or H/He gas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We know now from radial velocity surveys and transit space missions thatplanets only a few times more massive than our Earth are frequent aroundsolar-type stars. Fundamental questions about their formation history,physical properties, internal structure, and atmosphere composition are,however, still to be solved. We present here the detection of a systemof four low-mass planets around the bright (V = 5.5) and close-by (6.5pc) star HD 219134. This is the first result of the Rocky Planet Searchprogramme with HARPS-N on the Telescopio Nazionale Galileo in La Palma.The inner planet orbits the star in 3.0935 ± 0.0003 days, on aquasi-circular orbit with a semi-major axis of 0.0382 ± 0.0003AU. Spitzer observations allowed us to detect the transit of the planetin front of the star making HD 219134 b the nearest known transitingplanet to date. From the amplitude of the radial velocity variation(2.25 ± 0.22 ms-1) and observed depth of the transit(359 ± 38 ppm), the planet mass and radius are estimated to be4.36 ± 0.44 M⊕ and 1.606 ± 0.086R⊕, leading to a mean density of 5.76 ± 1.09 gcm-3, suggesting a rocky composition. One additional planetwith minimum-mass of 2.78 ± 0.65 M⊕ moves on aclose-in, quasi-circular orbit with a period of 6.767 ± 0.004days. The third planet in the system has a period of 46.66 ± 0.08days and a minimum-mass of 8.94 ± 1.13 M⊕, at0.233 ± 0.002 AU from the star. Its eccentricity is 0.46 ±0.11. The period of this planet is close to the rotational period of thestar estimated from variations of activity indicators (42.3 ± 0.1days). The planetary origin of the signal is, however, thepreferredsolution as no indication of variation at the corresponding frequency isobserved for activity-sensitive parameters. Finally, a fourth additionallonger-period planet of mass of 71 M⊕ orbits the starin 1842 days, on an eccentric orbit (e = 0.34 ± 0.17) at adistance of 2.56 AU.The photometric time series and radial velocities used in this work areavailable in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr(ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A72