86 resultados para photo period
Resumo:
The correlated process of photodetaching two electrons from the F- ion following the absorption of a single photon has been investigated over an energy range 20-62 eV. In the experiment, a beam of photons from the Advanced Light Source was collinearly merged with a counter-propagating beam of F- ions from a sputter ion source. The F+ ions produced in the interaction region were detected, and the normalized signal was used to monitor the relative cross section for the double-detachment reaction. An absolute scale for the cross section was established by measuring the spatial overlap of the two beams and by determining the efficiency for collection and detection of the F+ ions. The measured cross section is compared with R-matrix and random phase approximation calculations. These calculations show that the Auger decay of the 2s2p(6) core-excited state of the F atom plays a minor role in the production of F+ ions and that double detachment is likely to be dominated by simultaneous correlated ejection of two valence electrons at energies well above threshold.
Resumo:
In this paper we report an empirical study of the photographic portrayal of family members at home. Adopting a social psychological approach and focusing oil intergenerational power dynamics, our research explores the use of domestic photo displays in family representation. Parents and their teenagers from eight families in the south of England were interviewed at home about their interpretations of both stored and displayed photos within the home. Discussions centred on particular photographs found by the participants to portray self and family in different ways. The findings show that public displays of digital photos are still curated by mothers of the households, but with more difficulty and less control all with analogue photos. In addition, teenagers both contribute and comply with this curation within the home, whilst at the same time developing additional ways of presenting their families and themselves online that are 'unsupervised' by the curator. We highlight the conflict of interest that is at play within teen and parent practices and consider the challenges that this presents for supporting the representation of family through the design of photo display technology. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Cerebral palsy (CP) is a leading cause of physical disability in childhood with evidence that 90% of children with the condition sustain damage or malformation to their developing brain during the antenatal period. With half of all cases of children with CP being born prematurely many need extra help and support in the neonatal period. The aims of neonatal nursing for this high risk group include prevention of further neurological complications as well as working maintain stable infant physiology and provide information and support to parents. While a diagnosis of CP is seldom welcome there is now evidence that most children with CP are mildly affected, most have a normal life expectancy, most are well adjusted and most are happy, reporting a quality of life similar to children without CP. Neonatal nurses are ideally placed to communicate and prepare parents of children at high risk of developing CP about more positive future likely outcomes than previously thought.
Resumo:
Several authors have shown that precise measurements of transit time variations of exoplanets can be sensitive to other planetary bodies, such as exo-moons. In addition, the transit timing variations of the exoplanets closest to their host stars can provide tests of tidal dissipation theory. These studies, however, have not considered the effect of the host star. There is a large body of observational evidence that eclipse times of binary stars can vary dramatically due to variations in the quadrupole moment of the stars driven by stellar activity. In this paper, we investigate and estimate the likely impact such variations have on the transit times of exoplanets. We find in several cases that such variations should be detectable. In particular, the estimated period changes for WASP-18b are of the same order as those expected for tidal dissipation, even for relatively low values of the tidal dissipation parameter. The transit time variations caused by the Applegate mechanism are also of the correct magnitude and occur on time-scales such that they may be confused with variations caused by light-travel time effects due to the presence of a Jupiter-like second planet. Finally, we suggest that transiting exoplanet systems may provide a clean route (compared to binaries) to constraining the type of dynamo operating in the host star.
Resumo:
Aims: We report the discovery of WASP-38b, a long period transiting planet in an eccentric 6.871815 day orbit. The transit epoch is 2 455 335.92050 ± 0.00074 (HJD) and the transit duration is 4.663 h. Methods: WASP-38b's discovery was enabled due to an upgrade to the SuperWASP-North cameras. We performed a spectral analysis of the host star HD 146389/BD+10 2980 that yielded Teff = 6150 ± 80 K, log g = 4.3 ± 0.1, v sin i = 8.6 ± 0.4 km s-1, M_* = 1.16 ± 0.04 M? and R_* = 1.33 ± 0.03 R?, consistent with a dwarf of spectral type F8. Assuming a main-sequence mass-radius relation for the star, we fitted simultaneously the radial velocity variations and the transit light curves to estimate the orbital and planetary parameters. Results: The planet has a mass of 2.69 ± 0.06 MJup and a radius of 1.09 ± 0.03 RJup giving a density, ?p = 2.1 ± 0.1 ?J. The high precision of the eccentricity e = 0.0314 ± 0.0044 is due to the relative transit timing from the light curves and the RV shape. The planet equilibrium temperature is estimated at 1292 ± 33 K. WASP-38b is the longest period planet found by SuperWASP-North and with a bright host star (V = 9.4 mag), is a good candidate for followup atmospheric studies. Photometry and RV data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/525/A54
Resumo:
We present light curves and periods of 53 candidates for short period eclipsing binary stars identified by SuperWASP. These include 48 newly identified objects with periods
Resumo:
Thin films of titanium dioxide and titanium dioxide with incorporated gold and silver nanoparticles were deposited onto glass microscope slides, steel and titanium foil coupons by two sol-gel dip-coating methods. The film's photocatalytic activity and ability to evolve oxygen in a sacrificial solution were assessed. It was found that photocatalytic activity increased with film thickness (from 50 to 500 nm thick samples) for the photocatalytic degradation of methylene blue in solution and resazurin redox dye in an intelligent ink dye deposited on the surface. Contrastingly, an optimum film thickness of similar to 200 nm for both composite and pure films of titanium dioxide was found for water oxidation, using persulfate (S2O82-) as a sacrificial electron acceptor. The nanoparticle composite films showed significantly higher activity in oxygen evolution studies compared with plain TiO2 films.
Resumo:
The classic, non-photochemical blue bottle experiment involves the reaction of methylene blue (MB) with deprotonated glucose, to form a bleached form of the dye, leuco-methylene blue (LMB), and subsequent colour recovery by shaking with air. This reaction is a popular demonstrator of key principles in kinetics and reaction mechanisms. Here it is modified so as to highlight features of homogenous and heterogeneous photoinduced electron transfer (PET) (Pure Appl. Chem., 2007, 79, 293-465) reactions, i.e. blue bottle light experiments. The homogeneous blue bottle light experiment uses methylene blue, MB, as the photo-sensitizer and triethanolamine as the sacrificial electron donor. Visible light irradiation of this system leads to its rapid bleaching, followed by the ready restoration of its original colour upon shaking away from the light source. The heterogeneous blue bottle light experiment uses titania as the photo-sensitizer, MB as a redox indicator and glucose as the sacrificial electron donor. UVA light irradiation of this system leads to the rapid bleaching of the MB and the gradual restoration of its original colour with shaking and standing. The latter 'dark' step can be made facile and more demonstrator-friendly by using platinised titania particles. These two photochemical versions of the blue bottle experiment are used to explore the factors which underpin homogeneous and heterogeneous PET reactions and provide useful demonstrations of homogeneous and heterogeneous photochemistry.