125 resultados para nuclear translocation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study a simple model potential energy surface (PES) useful for describing multiple proton translocation mechanisms. The approach presented is relevant to the study of more complex biomolecular systems like enzymes. In this model, at low temperatures, proton tunnelling favours a concerted proton transport mechanism, while at higher temperatures there is a crossover from concerted to stepwise mechanisms; the crossover temperature depends on the energetic features of the PES. We illustrate these ideas by calculating the crossover temperature using energies taken from ab initio calculations on specific systems. Interestingly, typical crossover temperatures lie around room temperature; thus both concerted and stepwise reaction mechanisms should play an important role in biological systems, and one can be easily turned into another by external means such as modifying the temperature or the pH, thus establishing a general mechanism for modulation of the biomolecular function by external effectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M.E.M. Thompson-Cree, Neil McClure, Eilish T. Donnelly, Kristine E. Steele and Sheena E.M. Lewis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the isolation and polymorphism characterization of four plastid indels and six nuclear microsatellite loci in the invasive plant Heracleum mantegazzianum. These markers were tested in 27 individuals from two distant H. mantegazzianum populations. Plastid indels revealed the presence of five chlorotypes while five nuclear microsatellite loci rendered polymorphism. Applications of these markers include population genetics and phylogeography of H. mantegazzianum. A very good transferability of markers to Heracleum sphondylium was demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constitutive activation of nuclear factor (NF)-kappa B is linked with the intrinsic resistance of androgen-independent prostate cancer (AIPC) to cytotoxic chemotherapy. Interleukin-8 (CXCL8) is a transcriptional target of NF-kappa B whose expression is elevated in AIPC. This study sought to determine the significance of CXCL8 signaling in regulating the response of AIPC cells to oxaliplatin, a drug whose activity is reportedly sensitive to NF-kappa B activity. Administration of oxaliplatin to PC3 and DU145 cells increased NF-kappa B activity, promoting antiapoptotic gene transcription. In addition, oxaliplatin increased the transcription and secretion of CXCL8 and the related CXC-chemokine CXCL1 and increased the transcription and expression of CXC-chemokine receptors, especially CXC-chemokine receptor (CXCR) 2, which transduces the biological effects of CXCL8 and CXCL1. Stimulation of AIPC cells with CXCL8 potentiated NF-kappa B activation in AIPC cells, increasing the transcription and expression of NF-kappa B-regulated antiapoptotic genes of the Bcl-2 and IAP families. Coadministration of a CXCR2-selective antagonist, AZ10397767 (Bioorg Med Chem Lett 18:798-803, 2008), attenuated oxaliplatin-induced NF-kappa B activation, increased oxaliplatin cytotoxicity, and potentiated oxaliplatin-induced apoptosis in AIPC cells. Pharmacological inhibition of NF-kappa B or RNA interference-mediated suppression of Bcl-2 and survivin was also shown to sensitize AIPC cells to oxaliplatin. Our results further support NF-kappa B activity as an important determinant of cancer cell sensitivity to oxaliplatin and identify the induction of autocrine CXCR2 signaling as a novel mode of resistance to this drug.