160 resultados para marking technique
Resumo:
An efficient modelling technique is proposed for the analysis of a fractal-element electromagnetic band-gap array. The modelling is based on a method of moments modal analysis in conjunction with an interpolation scheme, which significantly accelerates the computations. The plane-wave and the surface-wave responses of the structure have been studied by means of transmission coefficients and dispersion diagrams. The multiband properties and the compactness of the proposed structure are presented. The technique is general and can be applied to arbitrary-shaped element geometries.
Resumo:
This paper presents research for developing a virtual inspection system that evaluates the dimensional tolerance of forged aerofoil blades formed using the finite element (FE) method. Conventional algorithms adopted by modern coordinate measurement processes have been incorporated with the latest free-form surface evaluation techniques to provide a robust framework for the dimensional inspection of FE aerofoil models. The accuracy of the approach had been verified with a strong correlation obtained between the virtual inspection data and coordinate measurement data from corresponding aerofoil components.
Resumo:
We have measured the two-electron contribution of the ground state energy of helium-like argon ions using an electron beam ion trap (EBIT). A two-dimensional map was measured showing the intensity of x-rays from the trap passing through a krypton-filled absorption cell. The independent axes of this map were electron beam energy and x-ray energy. From this map, we deduced the two-electron contribution of the ground state of helium-like argon. This experimentally determined Value (312.4 +/- 9.5 eV) was found to be in good agreement with our calculated values (about 303.35 eV) and previous calculations of the same quantity. Based on these measurements, we have shown that a ten-day absorption spectroscopy run with a super-EBIT should be sufficient to provide a new benchmark value for the two-electron contribution to the ground state of helium-like krypton. Such a measurement would then constitute a test of quantum electrodynamics to second order.
Resumo:
The dissolution process of metal complexes in ionic liquids was investigated by a multiple-technique approach to reveal the solvate species of the metal in solution. The task-specific ionic liquid betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) is able to dissolve stoichiometric amounts of the oxides of the rare-earth elements. The crystal structures of the compounds [Eu-2(bet)(8)(H2O)(4)][Tf2N](6), [Eu-2(bet)(8)(H2O)(2)][Tf2N](6)center dot 2H(2)O, and [Y-2(bet)(6)(H2O)(4)][Tf2N](6) were found to consist of dimers. These rare-earth complexes are well soluble in the ionic liquids [Hbet][Tf2N] and [C(4)mim]- [Tf2N] (C(4)mim = 1-butyl-3-methylimidazolium). The speciation of the metal complexes after dissolution in these ionic liquids was investigated by luminescence spectroscopy, H-1, C-13, and Y-89 NMR spectroscopy, and by the synchrotron techniques EXAFS (extended X-ray absorption fine structure) and HEXS (high-energy X-ray scattering). The combination of these complementary analytical techniques reveals that the cationic dimers decompose into monomers after dissolution of the complexes in the ionic liquids. Deeper insight into the solution processes of metal compounds is desirable for applications of ionic liquids in the field of electrochemistry, catalysis, and materials chemistry.
Resumo:
The paper explores the potential of applicability of Genetic programming approach (GP), adopted in this investigation, to model the combined effects of five independent variables to predict the mini-slump, the plate cohesion meter, the induced bleeding test, the J-fiber penetration value, and the compressive strength at 7 and 28 days of self-compacting slurry infiltrated fiber concrete (SIFCON). The variables investigated were the proportions of limestone powder (LSP) and sand, the dosage rates of superplasticiser (SP) and viscosity modifying agent (VMA), and water-to-binder ratio (W/B). Twenty eight mixtures were made with 10-50% LSP as replacement of cement, 0.02-0.06% VMA by mass of cement, 0.6-1.2% SP and 50-150% sand (% mass of binder) and 0.42-0.48 W/B. The proposed genetic models of the self-compacting SIFCON offer useful modelling approach regarding the mix optimisation in predicting the fluidity, the cohesion, the bleeding, the penetration, and the compressive strength.