76 resultados para maintenance of recombination
Resumo:
Androgen receptor (AR) is essential for the maintenance of the male reproductive systems and is critical for the carcinogenesis of human prostate cancers (PCas). D-type cyclins are closely related to the repression of AR function. It has been well documented that cyclin D1 inhibits AR function through multiple mechanisms, but the mechanism of how cyclin D3 exerts its repressive role in the AR signaling pathway remains to be identified. In the present investigation, we demonstrate that cyclin D3 and the 58-kDa isoform of cyclin-dependent kinase 11 (CDK11p58) repressed AR transcriptional activity as measured by reporter assays of transformed cells and prostate-specific antigen expression in PCa cells. AR, cyclin D3, and CDK11p58 formed a ternary complex in cells and were colocalized in the luminal epithelial layer of the prostate. AR activity is controlled by phosphorylation at specific sites. We found that AR was phosphorylated at Ser-308 by cyclin D3/CDK11p58 in vitro and in vivo, leading to the repressed activity of AR transcriptional activation unit 1 (TAU1). Furthermore, androgen-dependent proliferation of PCa cells was inhibited by cyclin D3/CDK11p58 through AR repression. These data suggest that cyclin D3/CDK11p58 signaling is involved in the negative regulation of AR function.
Resumo:
In the mate-guarding amphipod, Gammarus pulex, the enlarged male posterior gnathopods have been variously suggested to function to grasp and subdue the female, to be used as weapons in fights between males, to signal to the female the male presence and stimulate moult accelaration, egg development or egg extrusion. These hypotheses were tested in a series of experiments, the results of which reveal an unexpected function. Ablation of the posterior gnathopods of males showed that they were neither necessary for, nor advantageous in, establishment and/ or maintenance of precopula mate guarding, with or without competition with intact males. Furthermore, these appendages do not function to advance female moult, or stimulate egg development or extrusion. However, only males with intact posterior gnathopods were able to copulate. We also show that females require a full copulation of several bouts to extrude eggs. We conclude that the function of the posterior gnathopods is to facilitate copulation and suggest future studies focus on the selective pressures acting on copulating males.
Resumo:
Maintenance of oxygen homeostasis is a key requirement to ensure normal mammalian cell growth and differentiation. Hypoxia arises when oxygen demand exceeds supply, and is a feature of multiple human diseases including stroke, cancer and renal fibrosis. We have investigated the effect of hypoxia on kidney cells, and observed that insulin-induced cell viability is increased in hypoxia. We have characterized the role of protein kinase B (PKB/ Akt) in these cells as a potential mediator of this effect. PKB/Akt activity was increased by low oxygen concentrations in kidney cells, and insulin-stimulated activation of PKB/Akt was stronger, more rapid and more sustained in hypoxia. Reduction of HIF1 alpha levels using antimycin-A or siRNA targeting HlF1 alpha did not affect PKB/Akt activation in hypoxia. Pharmacologic stabilization of HIF1 alpha independent of hypoxia did not increase insulin-stimulated PKB/Akt activation. Although increased insulin-stimulated cell viability was observed in hypoxia, no differences in the degree of insulin-stimulated glucose uptake were observed in L6 muscle cells in hypoxia compared to normoxia. Thus, PKB/Akt may regulate specific cellular responses to growth factors such as insulin under adverse conditions such as hypoxia. alpha 2007 Elsevier GmbH. All rights reserved.
Resumo:
Background: MicroRNAs (miRNAs) are small RNA molecules (similar to 22 nucleotides) which have been shown to play an important role both in development and in maintenance of adult tissue. Conditional inactivation of miRNAs in the eye causes loss of visual function and progressive retinal degeneration. In addition to inhibiting translation, miRNAs can mediate degradation of targeted mRNAs. We have previously shown that candidate miRNAs affecting transcript levels in a tissue can be deduced from mRNA microarray expression profiles. The purpose of this study was to predict miRNAs which affect mRNA levels in developing and adult retinal tissue and to confirm their expression.
Results: Microarray expression data from ciliary epithelial retinal stem cells (CE-RSCs), developing and adult mouse retina were generated or downloaded from public repositories. Analysis of gene expression profiles detected the effects of multiple miRNAs in CE-RSCs and retina. The expression of 20 selected miRNAs was confirmed by RT-PCR and the cellular distribution of representative candidates analyzed by in situ hybridization. The expression levels of miRNAs correlated with the significance of their predicted effects upon mRNA expression. Highly expressed miRNAs included miR-124, miR-125a, miR-125b, miR-204 and miR-9. Over-expression of three miRNAs with significant predicted effects upon global mRNA levels resulted in a decrease in mRNA expression of five out of six individual predicted target genes assayed.
Conclusions: This study has detected the effect of miRNAs upon mRNA expression in immature and adult retinal tissue and cells. The validity of these observations is supported by the experimental confirmation of candidate miRNA expression and the regulation of predicted target genes following miRNA over-expression. Identified miRNAs are likely to be important in retinal development and function. Misregulation of these miRNAs might contribute to retinal degeneration and disease. Conversely, manipulation of their expression could potentially be used as a therapeutic tool in the future.
Resumo:
PURPOSE: The presence of novel KCNQ currents was investigated in guinea pig bladder interstitial cells of Cajal and their contribution to the maintenance of the resting membrane potential was assessed. MATERIALS AND METHODS: Enzymatically dispersed interstitial cells of Cajal were patch clamped with K(+) filled pipettes in voltage clamp and current clamp modes. Pharmacological modulators of KCNQ channels were tested on membrane currents and the resting membrane potential. RESULTS: Cells were stepped from -60 to 40 mV to evoke voltage dependent currents using a modified K(+) pipette solution containing ethylene glycol tetraacetic acid (5 mM) and adenosine triphosphate (3 mM) to eliminate large conductance Ca activated K channel and K(adenosine triphosphate) currents. Application of the KCNQ blockers XE991, linopirdine (Tocris Bioscience, Ellisville, Missouri) and chromanol 293B (Sigma) decreased the outward current in concentration dependent fashion. The current-voltage relationship of XE991 sensitive current revealed a voltage dependent, outwardly rectifying current that activated positive to -60 mV and showed little inactivation. The KCNQ openers flupirtine and meclofenamic acid (Sigma) increased outward currents across the voltage range. In current clamp mode XE991 or chromanol 293B decreased interstitial cell of Cajal resting membrane potential and elicited the firing of spontaneous transient depolarizations in otherwise quiescent cells. Flupirtine or meclofenamic acid hyperpolarized interstitial cells of Cajal and inhibited any spontaneous electrical activity. CONCLUSIONS: This study provides electrophysiological evidence that bladder interstitial cells of Cajal have KCNQ currents with a role in the regulation of interstitial cell of Cajal resting membrane potential and excitability. These novel findings provide key information on the ion channels present in bladder interstitial cells of Cajal and they may indicate relevant targets for the development of new therapies for bladder instability.
Resumo:
Drusen are small focal extracellular deposits underneath the retina, visible ophthalmoscopically as yellow dots. The more hard drusen there are, the greater the risk of developing soft drusen and retinal pigmentary changes, which in turn increase the risk of developing advanced age-related macular degeneration. Much remains to be discovered about drusen. For the patient with drusen, basic advice on diet and smoking and maintenance of a high level of vigilance for visual changes is appropriate management. © The Author 2009. Published by Oxford University Press [on behalf of the British Geriatrics Society]. All rights reserved.
Resumo:
The rate of species loss is increasing on a global scale and predators are most at risk from human-induced extinction. The effects of losing predators are difficult to predict, even with experimental single species removals, because different combinations of species interact in unpredictable ways. We tested the effects of the loss of groups of common predators on herbivore and algal assemblages in a model benthic marine system. The predator groups were fish, shrimp and crabs. Each group was represented by at least two characteristic species based on data collected at local field sites. We examined the effects of the loss of predators while controlling for the loss of predator biomass. The identity, not the number of predator groups, affected herbivore abundance and assemblage structure. Removing fish led to a large increase in the abundance of dominant herbivores, such as Ampithoids and Caprellids. Predator identity also affected algal assemblage structure. It did not, however, affect total algal mass. Removing fish led to an increase in the final biomass of the least common taxa (red algae) and reduced the mass of the dominant taxa (brown algae). This compensatory shift in the algal assemblage appeared to facilitate the maintenance of a constant total algal biomass. In the absence of fish, shrimp at higher than ambient densities had a similar effect on herbivore abundance, showing that other groups could partially compensate for the loss of dominant predators. Crabs had no effect on herbivore or algal populations, possibly because they were not at carrying capacity in our experimental system. These findings show that contrary to the assumptions of many food web models, predators cannot be classified into a single functional group and their role in food webs depends on their identity and density in 'real' systems and carrying capacities.
Resumo:
Macroalgal blooms are a growing environmental problem in eutrophicated coastal ecosystems. Members of the green algal genus Ulva are significant contributors to blooms, which are typically dominated by only one of several co-occurring opportunistic species. Our understanding of bloom dynamics, such as the importance of clonality, is limited because previously used genetic markers such as internal transcribed spacer sequences have shown very little resolution. Microsatellites are the marker of choice for such studies, but to date, only five primer pairs have been developed for a single member of this genus, Ulva intestinalis. We have now developed four new microsatellite markers for U. intestinalis using genome screening and restriction-ligation and tested them on individuals from six populations in the Gulf of Finland, Finland. All new markers exhibited polymorphism in U. intestinalis, with the numbers of alleles ranging from 6 to 10. On the basis of assignment tests, F-ST estimates and analysis of molecular variance, there was genetic differentiation among populations. Where significantly different, expected heterozygosity (HE) was higher than observed heterozygosity (Ho), indicating a trend toward heterozygote deficiency. This may indicate that although Ulva spores can disperse relatively efficiently, asexual reproduction can result in genetic differentiation among populations. We also tested the cross-species amplification of our primers and the five primer pairs reported previously on seven species of Ulva, Ulvaria obscura and Unbraulva olivascens (all members of the Ulvaceae). In each species, from five to nine of the loci produced an amplification product, and one to four alleles were discovered at each locus. These markers therefore have great potential for testing hypotheses about the formation and maintenance of multispecies macroalgal blooms.
Resumo:
Purpose: This study aimed to evaluate the effects of endostatin on tight junction (TJ) integrity in retinal microvascular endothelial cells (RMECs) in vitro and in vivo. Moreover, it was hypothesized that endostatin-induced occludin upregulation regulated VEGF(165)-mediated increases in endothelial cell permeability and involved activation of the MAPK signaling cascade. Endostatin is a 20-kDa fragment of collagen XVIII that has been shown to be efficacious in the eye by preventing retinal neovascularization. Endostatin is a specific inhibitor of endothelial cell proliferation, migration, and angiogenesis and has been reported to reverse VEGF-mediated increases in vasopermeability and to promote integrity of the blood-retinal barrier (BRB). In order to determine the mechanism of endostatin action on BRB integrity, we have examined the effects of endostatin on a number of intracellular pathways implicated in endothelial cell physiology. Methods: C57/Bl6 mice were injected with VEGF(165) and/or endostatin, and the distribution of occludin staining was determined using retinal flatmounts. Western blot analysis of RMECs treated with VEGF(165) and/or endostatin was used to determine changes in occludin expression and p38 MAPK and extracellular regulated kinase (ERK1/ERK2 MAPK) activation, while FD-4 flux across the RMEC monolayer was used to determine changes in paracellular permeability. Results: Endostatin prevented the discontinuous pattern of occludin staining observed at the retinal blood vessels of mice administered an intraocular injection of VEGF(165). It was shown that endostatin activated p38 MAPK 5 min after addition to RMECs and continued to do so for approximately 30 min. Endostatin was also shown to activate ERK1/ERK2 5 min after addition and continued to do so, albeit with less potency, up to and including 15 min after addition. Inhibition of p38 MAPK and ERK1/ERK2 prevented endostatin's ability to upregulate levels of occludin expression. Inhibition of these key signaling molecules was shown to prevent endostatin's ability to protect against VEGF(165)- mediated increases in paracellular permeability in vitro. However, it appears that p38 MAPK may play a more important role in VEGF-mediated permeability, as inhibition of ERK1/ERK2 will not prevent VEGF(165)- mediated permeability compared with control ( untreated) cells or cells treated with both a p38 MAPK inhibitor and VEGF(165). Conclusions: Occludin is important for the maintenance of tight junction integrity in vivo. In a p38 MAPK and ERK1/ERK2 dependent manner, endostatin was shown to upregulate the levels of expression of the tight junction protein occludin. Inhibition of these key MAPK components may prevent endostatin's ability to decrease VEGF(165)-induced paracellular permeability.
Resumo:
Functional compensation between homeodomain proteins has hindered the ability to unravel their role in hematopoiesis using single gene knockouts. Because HoxB genes are dispensable for hematopoiesis, and most HoxA genes are expressed an order of magnitude higher than other cluster genes in hematopoietic stem cell (HSC)-enriched populations, we hypothesize that maintenance of HoxA cluster expression is important for adult hematopoiesis and that global decrease of HoxA gene expression levels affects steady-state hematopoiesis.
Resumo:
A description of the radiation emitted by impurities from within a plasma is crucial if spectral line intensities are to be used in detailed studies, such as the analysis of impurity transport. The simplest and most direct check that can be made on measurements of line intensities is to analyse their ratios with other lines from the same ion. This avoids uncertainties in determining the volume of the emitting plasma and the absolute sensitivity calibration of the spectrometer and, in some cases, the need even for accurate measurements of parameters such as electron density. Consistency is required between the measured line intensity ratios and the theoretical values. The expected consistency has not been found for radiation emitted from the JET scrape-off layer (e.g. Lawson et al 2009a JINST 4 P04013), meaning that the description of the spectral line intensities of impurity emission from the plasma edge is incomplete. In order to gain further understanding of the discrepancies, an analysis has been carried out for emission from the JET divertor plasma and this is reported in this paper. Carbon was the main low Z intrinsic impurity in JET and an analysis of spectral line intensity ratios has been made for the C (IV) radiation emitted from the JET divertor. In this case, agreement is found between the measured and theoretical ratios to a very high accuracy, namely to within the experimental uncertainty of similar to +/- 10%. This confirms that the description of the line intensities for the present observations is complete. For some elements and ionization stages, an analysis of line intensity ratios can lead to the determination of parameters such as the electron temperature of the emitting plasma region and estimates of the contribution of recombination to the electron energy level populations. This applies to C (IV) and, to show the value and possibilities of the spectral measurements, these parameters have been calculated for a database of Ohmic and additionally heated phases of a large number of pulses. The importance of dielectronic, radiative and charge-exchange recombination as well as ionization has been investigated. In addition, the development of T-e throughout two example discharges is illustrated. The presented results indicate a number of areas for further investigation.
Resumo:
The kinetics of photoreduction of methyl orange by ethylenediaminetetraacetic acid (EDTA) sensitized by colloidal CdS are reported as a function of [methyl orange], [O2] and [EDTA]. The results are interpreted using a reaction scheme which was proposed in an earlier paper for the same reaction sensitized by a powdered dispersion of highly crystalline CdS. An analysis of the results for the CdS colloid based on this reaction scheme shows that the rate of dye reduction by photogenerated electrons is approximately 50 times greater than the rate of oxygen reduction and the rate of scavenging of the photogenerated holes is approximately 7000 times greater than the rate of recombination. These findings are discussed in the light of similar observations reported for powdered CdS.
Resumo:
This study reports the potent myoactivity of flatworm FMRFamide-related peptides (FaRPs) on isolated muscle fibers of the human blood fluke, Schistosoma mansoni. The turbellarian peptides YIRFamide (EC50 4 eta M), GYIRFamide (EC50 1 eta M). and RYIRFamide (EC50 7 eta M), all induced muscle contraction more potently than the cestode FaRP GNFFRFamide (EC50 500 eta M). Using a series of synthetic analogs of the flatworm peptides YIRFamide, GYIRFamide and RYIRFamide, the structure-activity relationships of the muscle FaRP receptor were examined. With a few exceptions, each residue in YIRFamide is important in the maintenance of its myoactivity. Alanine scans resulted in peptides that were inactive (Ala(1), Ala(2), Ala(3) and Ala(4) YIRFamide; Ala(4) and Ala(5) RYIRFamide) or had much reduced potencies (Ala(1), Ala(2) and Ala(3) RYIRFamide). Substitution of the N-terminal (Tyr(1)) residue of YIRFamide with the non-aromatic residues Thr or Arg produced analogs with greatly reduced potency. Replacement of the N-terminal Tyr with aromatic amino acids resulted in myoactive peptides (FIRFamide, EC50 100 eta M; WIRFamide, EC50 0.5 eta M). The activity of YIRFamide analogs which possessed a Leu(2), Phe(2) or Met(2) residue (EC50's 10, 1 and 3 eta M, respectively) instead of Ile(2) was not significantly altered, whereas, YVRFamide had a greatly reduced (EC50 200 eta M) activity. Replacement of the Phe(4) with a Tyr(4) (YIRYamide) also greatly lowered potency. Truncated analogs were either inactive (FRFamide, YRFamide, HRFamide, RFamide, Famide) or had very low potency (IRFamide and MRFamide), with the exception of nLRFamide (EC50 20 eta M). YIRF free acid was inactive. In summary, these data show the general structural requirements of this schistosome muscle FaRP receptor to be similar, but not identical, to those of previously characterized molluscan FaRP receptors. (C) 1997 Elsevier Science Inc.
Resumo:
Objectives: To investigate the pharmacokinetics (PK) of maraviroc, a CCR5-targeted HIV-1 entry inhibitor, in rhesus macaques following vaginal administration of various maraviroc-loaded aqueous hydroxyethylcellulose (HEC) gels, and to correlate the PK data with efficacy in a single high-dose vaginal SHIV-162P3 challenge model.
Methods: Maraviroc concentrations in vaginal fluid (Weck-Cel® sponge), vaginal tissue (punch biopsy) and plasma were assessed over 72 h following single dose vaginal application of various maraviroc-loaded HEC gels. The range of maraviroc gel concentrations was sufficiently broad (0.003 – 3.3% w/w) such that test gels included both fully solubilised and predominantly dispersed formulations. The efficacy of the HEC gels against a single high dose vaginal SHIV-162P3 challenge was also measured, and correlated with the PK concentrations.
Results: Maraviroc concentrations in vaginal fluid (range 104 – 107 ng/mL), vaginal tissue (100-1200 ng/g) and plasma (< 102 ng/mL) were highly dependent on maraviroc gel loading, irrespective of the form of the maraviroc component within the gel (solubilised vs. dispersed). Fluid and plasma concentrations were generally highest 0.5 or 2 h after gel application, before declining steadily out to 72 h. Maraviroc concentrations in the various biological compartments correlated strongly with the extent of protection against vaginal SHIV-162P3 challenge. Complete protection was achieved with a 3.3% w/w maraviroc gel.
Conclusions: A high degree of correlation between PK and efficacy was observed. Based on the data obtained with the 3.3% w/w maraviroc gel, maintenance of vaginal fluid and tissue levels in the order of 107 ng/mL and 103 ng/g, respectively, are required for complete protection with this compound.