39 resultados para magnetohydrodynamics: MHD


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alfvén waves are considered to be viable transporters of the non-thermal energy required to heat the Sun's quiescent atmosphere. An abundance of recent observations, from state-of-the-art facilities, have reported the existence of Alfvén waves in a range of chromospheric and coronal structures. Here, we review the progress made in disentangling the characteristics of transverse kink and torsional linear magnetohydrodynamic (MHD) waves. We outline the simple, yet powerful theory describing their basic properties in (non-)uniform magnetic structures, which closely resemble the building blocks of the real solar atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In a selective group of patients accelerated partial breast irradiation (APBI) might be applied after conservative breast surgery to reduce the amount of irradiated healthy tissue. The role of volumetric modulated arc therapy (VMAT) and voluntary moderately deep inspiration breath-hold (vmDIBH) techniques in further reducing irradiated healthy – especially heart – tissue is investigated.

Material and methods: For 37 partial breast planning target volumes (PTVs), three-dimensional conformal radiotherapy (3D-CRT) (3 – 5 coplanar or non-coplanar 6 and/or 10 MV beams) and VMAT (two partial 6 MV arcs) plans were made on CTs acquired in free-breathing (FB) and/or in vmDIBH. Dose-volume parameters for the PTV, heart, lungs, and breasts were compared. 

Results: Better dose conformity was achieved with VMAT compared to 3D-CRT (conformity index 1.24 0.09 vs. 1.49 0.20). Non-PTV ipsilateral breast receiving 50% of the prescribed dose was on average reduced by 28% in VMAT plans compared to 3D-CRT plans. Mean heart dose (MHD) reduced from 2.0 (0.1 – 5.1) Gy in 3D-CRT(FB) to 0.6 (0.1 – 1.6) Gy in VMAT(vmDIBH). VMAT is benefi cial for MHD reduction if MHD with 3D-CRT exceeds 0.5Gy. Cardiac dose reduction as a result of VMAT increases with increasing initial MHD, and adding vmDIBH reduces the cardiac dose further. Mean dose to the ipsilateral lung decreased from 3.7 (0.7 – 8.7) to 1.8 (0.5 – 4.0) Gy with VMAT(vmDIBH) compared to 3D-CRT(FB). VMAT resulted in a slight increase in the contralateral breast dose (DMean ) always remaining 1.9 Gy). 

Conclusions: For APBI patients, VMAT improves PTV dose conformity and delivers lower doses to the ipsilateral breast and lung compared to 3D-CRT. This goes at the cost of a slight but acceptable increase of the contralateral breast dose. VMAT reduces cardiac dose if MHD exceeds 0.5 Gy for 3D-CRT. Adding vmDIBH results in a further reduction of heart and ipsilateral lung dose. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the "warm" contributions to the emission. HMI/SDO data allow us to focus on "inter-moss" regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min–1 and 0.7 min–1. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D "hybrid" shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT BODY: To resolve outstanding questions on heating of coronal loops, we study intensity fluctuations in inter-moss portions of active region core loops as observed with AIA/SDO. The 94Å fluctuations (Figure 1) have structure on timescales shorter than radiative and conductive cooling times. Each of several strong 94Å brightenings is followed after ~8 min by a broader peak in the cooler 335Å emission. This indicates that we see emission from the hot component of the 94Å contribution function. No hotter contributions appear, and we conclude that the 94Å intensity can be used as a proxy for energy injection into the loop plasma. The probability density function of the observed 94Å intensity has 'heavy tails' that approach zero more slowly than the tails of a normal distribution. Hence, large fluctuations dominate the behavior of the system. The resulting 'intermittence' is associated with power-law or exponential scaling of the related variables, and these in turn are associated with turbulent phenomena. The intensity plots in Figure 1 resemble multifractal time series, which are common to various forms of turbulent energy dissipation. In these systems a single fractal dimension is insufficient to describe the dynamics and instead there is a spectrum of fractal dimensions that quantify the self-similar properties. Figure 2 shows the multifractal spectrum from our data to be invariant over timescales from 24 s to 6.4 min. We compare these results to outputs from theoretical energy dissipation models based on MHD turbulence, and in some cases we find substantial agreement, in terms of intermittence, multifractality and scale invariance. Figure 1. Time traces of 94A intensity in the inter-moss portions of four AR core loops. Figure 2. Multifractal spectra showing timescale invariance. The four cases of Figure 1 are included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases1. It is well accepted that both the plasma density and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult as the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise2, 3. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9–55 G (refs 4,5,6,7). A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwards, allow the spatial variation of the local coronal magnetic field to be mapped with high precision. We find coronal magnetic field strengths of 32 ± 5 G above the sunspot, which decrease rapidly to values of approximately 1 G over a lateral distance of 7,000 km, consistent with previous isolated and unresolved estimations. Our results demonstrate a new, powerful technique that harnesses the omnipresent nature of sunspot oscillations to provide magnetic field mapping capabilities close to a magnetic source in the solar corona.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent high-resolution observations of sunspot oscillations using simultaneously operated ground- and space-based telescopes reveal the intrinsic connection between different layers of the solar atmosphere. However, it is not clear whether these oscillations are externally driven or generated in situ. We address this question by using observations of propagating slow magnetoacoustic waves along a coronal fan loop system. In addition to the generally observed decreases in oscillation amplitudes with distance, the observed wave amplitudes are also found to be modulated with time, with similar variations observed throughout the propagation path of the wave train. Employing multi-wavelength and multi-instrument data, we study the amplitude variations with time as the waves propagate through different layers of the solar atmosphere. By comparing the amplitude modulation period in different layers, we find that slow magnetoacoustic waves observed in sunspots are externally driven by photospheric p-modes, which propagate upward into the corona before becoming dissipated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system’s dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the infrom the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ −0.4 ± 0.2◦) and true 3D obliquity (ψ ≈ 7+12 −4 ◦ ). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.