83 resultados para lymphocyte proliferation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential gene expression in two established initiation and promotion skin carcinogenesis models during promotion and tumor formation was determined by microarray technology with the purpose of distinguishing the genes more associated with neoplastic transformation from those linked with proliferation and differentiation. The first model utilized dimethylbenz[a]anthracene initiation and 12-O-tetradecanoylphorbol 13-acetate (TPA) promotion in the FVB/N mouse, and the second TPA promotion of the Tg.Ac mouse, which is endogenously initiated by virtue of an activated Ha-ras transgene. Comparison of gene expression profiles across the two models identified genes whose altered expression was associated with papilloma formation rather than TPA-induced proliferation and differentiation. DMBA suppressed TPA-induced differentiation which allowed identification of those genes associated more specifically with differentiation rather than proliferation. EASE (Expression Analysis Systemic Explorer) indicated a correlation between muscle-associated genes and skin differentiation, whereas genes involved with protein biosynthesis were strongly correlated with proliferation. For verification the altered expression of selected genes were confirmed by RT-PCR; Carbonic anhydrase 2, Thioredoxin 1 and Glutathione S-transferase omega 1 associated with papilloma formation and Enolase 3, Cystatin 6 and Filaggrin associated with TPA-induced proliferation and differentiation. In situ analysis located the papillomas Glutathione S-transferase omega 1 expression to the proliferating areas of the papillomas. Thus we have identified profiles of differential gene expression associated with the tumorigenesis and promotion stages for skin carcinogenesis in the mouse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proto-oncogene Ras undergoes a series of post-translational modifications at its carboxyl-terminal CAAX motif that are essential for its proper membrane localization and function. One step in this process is the cleavage of the CAAX motif by the enzyme Ras-converting enzyme 1 (RCE1). Here we show that the deubiquitinating enzyme USP17 negatively regulates the activity of RCE1. We demonstrate that USP17 expression blocks Ras membrane localization and activation, thereby inhibiting phosphorylation of the downstream kinases MEK and ERK. Furthermore, we show that this effect is caused by the loss of RCE1 catalytic activity as a result of its deubiquitination by USP17. We also show that USP17 and RCE1 co-localize at the endoplasmic reticulum and that USP17 cannot block proliferation or Ras membrane localization in RCE1 null cells. These studies demonstrate that USP17 modulates Ras processing and activation, at least in part, by regulating RCE1 activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most tissues develop from stem cells and precursors that undergo differentiation as their proliferative potential decreases. Mature differentiated cells rarely proliferate and are replaced at the end of their life by new cells derived from precursors. Langerhans cells (LCs) of the epidermis, although of myeloid origin, were shown to renew in tissues independently from the bone marrow, suggesting the existence of a dermal or epidermal progenitor. We investigated the mechanisms involved in LC development and homeostasis. We observed that a single wave of LC precursors was recruited in the epidermis of mice around embryonic day 18 and acquired a dendritic morphology, major histocompatibility complex II, CD11c, and langerin expression immediately after birth. Langerin+ cells then undergo a massive burst of proliferation between postnatal day 2 (P2) and P7, expanding their numbers by 10–20-fold. After the first week of life, we observed low-level proliferation of langerin+ cells within the epidermis. However, in a mouse model of atopic dermatitis (AD), a keratinocyte signal triggered increased epidermal LC proliferation. Similar findings were observed in epidermis from human patients with AD. Therefore, proliferation of differentiated resident cells represents an alternative pathway for development in the newborn, homeostasis, and expansion in adults of selected myeloid cell populations such as LCs. This mechanism may be relevant in locations where leukocyte trafficking is limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin-like growth factor-I (IGF-I) signaling is strongly associated with cell growth and regulates the rate of synthesis of the rRNA precursor, the first and the key stage of ribosome biogenesis. In a screen for mediators of IGF-I signaling in cancer, we recently identified several ribosome-related proteins, including NEP1 (nucleolar essential protein 1) and WDR3 (WD repeat 3), whose homologues in yeast function in ribosome processing. The WDR3 gene and its locus on chromosome 1p12-13 have previously been linked with malignancy. Here we show that IGF-I induces expression of WDR3 in transformed cells. WDR3 depletion causes defects in ribosome biogenesis by affecting 18 S rRNA processing and also causes a transient down-regulation of precursor rRNA levels with moderate repression of RNA polymerase I activity. Suppression of WDR3 in cells expressing functional p53 reduced proliferation and arrested cells in the G1 phase of the cell cycle. This was associated with activation of p53 and sequestration of MDM2 by ribosomal protein L11. Cells lacking functional p53 did not undergo cell cycle arrest upon suppression of WDR3. Overall, the data indicate that WDR3 has an essential function in 40 S ribosomal subunit synthesis and in ribosomal stress signaling to p53-mediated regulation of cell cycle progression in cancer cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bradykinin and related peptides are found in the defensive skin secretions of many frogs and toads. While the physiological roles of bradykinin-related peptides in sub-mammalian vertebrates remains obscure, in mammals, including humans, canonical bradykinin mediates a multitude of biological effects including the proliferation of many types of cancer cell. Here we have examined the effect of the bradykinin B2 receptor antagonist peptide, kinestatin, originally isolated by our group from the skin secretion of the giant fire-bellied toad, Bombina maxima, on the proliferation of the human prostate cancer cell lines, PC3, DU175 and LnCAP. The bradykinin receptor status of all cell lines investigated was established through PCR amplification of transcripts encoding both B1 and B2 receptor subtypes. Following this demonstration, all cell lines were grown in the presence or absence of kinestatin and several additional bradykinin receptor antagonists of amphibian skin origin and the effects on proliferation of the cell lines was investigated using the MTT assay and by counting of the cells in individual wells of 96-well plates. All of the amphibian skin secretion-derived bradykinin receptor antagonists inhibited proliferation of all of the prostate cancer lines investigated in a dose-dependent manner. In addition, following incubation of peptides with each cell line and analysis of catabolites by mass spectrometry, it was found that bradykinin was highly labile and each antagonist was highly stable under the conditions employed. Bradykinin signalling pathways are thus worthy of further investigation in human prostate cancer cell lines and the evidence presented here would suggest the testing of efficacy in animal models of prostate cancer as a positive outcome could lead to a drug development programme for the treatment of this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of immune modifiers of inherited cancer syndromes may provide a rationale for preventive therapy. Cowden disease (CD) is a genetically heterogeneous inherited cancer syndrome that arises predominantly from germline phosphatase and tensin homologue deleted on chromosome 10 (PTEN) mutation and increased phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) signalling. However, many patients with classic CD diagnostic features are mutation-negative for PTEN (PTEN M-Neg). Interferon (IFN)-gamma can modulate the PI3K/mTOR pathway, but its association with PTEN M-Neg CD remains unclear. This study assessed IFN-gamma secretion by multi-colour flow cytometry in a CD kindred that was mutation-negative for PTEN and other known susceptibility genes. Because IFN-gamma responses may be regulated by killer cell immunoglobulin-like receptors (KIR) and respective human leucocyte antigen (HLA) ligands, KIR/HLA genotypes were also assessed. Activating treatments induced greater IFN-gamma secretion in PTEN M-Neg CD peripheral blood lymphocytes versus healthy controls. Increased frequency of activating KIR genes, potentially activating KIR/HLA compound genotypes and reduced frequency of inhibitory genotypes, were found in the PTEN M-Neg CD kindred. Differences of IFN-gamma secretion were observed among PTEN M-Neg CD patients with distinct KIR/HLA compound genotypes. Taken together, these findings show enhanced lymphocyte secretion of IFN-gamma that may influence the PI3K/mTOR CD causal molecular pathway in a PTEN mutation-negative CD kindred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Metastatic breast cancer cells frequently and ectopically express the transcription factor RUNX2, which normally attenuates proliferation and promotes maturation of osteoblasts. RUNX2 expression is inversely regulated with respect to cell growth in osteoblasts and deregulated in osteosarcoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: C/EBP alpha (cebpa) is a putative tumor suppressor. However, initial results indicated that cebpa was up-regulated in a subset of human hepatocellular carcinomas (HCCs). The regulation and function of C/EBP alpha was investigated in HCC cell lines to clarify its role in liver carcinogenesis. METHODS: The regulation of C/EBP alpha expression was studied by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting, immunohistochemistry, methylation-specific PCR, and chromatin immunoprecipitation assays. C/EBP alpha expression was knocked-down by small interfering RNA or short hairpin RNA. Functional assays included colony formation, methylthiotetrazole, bromodeoxyuridine incorporation, and luciferase-reporter assays. RESULTS: Cebpa was up-regulated at least 2-fold in a subset (approximately 55%) of human HCCs compared with adjacent non tumor tissues. None of the up-regulated samples were positive for hepatitis C infection. The HCC cell lines Hep3B and Huh7 expressed high, PLC/PRF/5 intermediate, HepG2 and HCC-M low levels of C/EBP alpha, recapitulating the pattern of expression observed in HCCs. No mutations were detected in the CEBP alpha gene in HCCs and cell lines. C/EBP alpha was localized to the nucleus and functional in Hep3B and Huh7 cells; knocking-down its expression reduced target-gene expression, colony formation, and cell growth, associated with a decrease in cyclin A and CDK4 concentrations and E2F transcriptional activity. Epigenetic mechanisms including DNA methylation, and the binding of acetylated histone H3 to the CEBP alpha promoter-regulated cebpa expression in the HCC cells. CONCLUSIONS: C/EBP alpha is up-regulated in a subset of HCCs and has growth-promoting activities in HCC cells. Novel oncogenic mechanisms involving C/EBP alpha may be amenable to epigenetic regulation to improve treatment outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The t(11; 17)(q23;q21) translocation is associated with a retinoic acid (RA)-insensitive form of acute promyelocytic leukemia (APL), involving the production of reciprocal fusion proteins, promyelocytic leukemia zinc finger-retinoic acid receptor alpha (PLZF-RAR alpha) and RAR alpha-PLZF. Using a combination of chromatin immuno-precipitation promotor arrays (ChIP-chip) and gene expression profiling, we identify novel, direct target genes of PLZF-RAR alpha that tend to be repressed in APL compared with other myeloid leukemias, supporting the role of PLZF-RAR alpha as an aberrant repressor in APL. In primary murine hematopoietic progenitors, PLZF-RAR alpha promotes cell growth, and represses Dusp6 and Cdkn2d, while inducing c-Myc expression, consistent with its role in leukemogenesis. PLZF-RAR alpha binds to a region of the c-MYC promoter overlapping a functional PLZF site and antagonizes PLZF-mediated repression, suggesting that PLZF-RAR alpha may act as a dominant-negative version of PLZF by affecting the regulation of shared targets. RA induced the differentiation of PLZF-RAR alpha-transformed murine hematopoietic cells and reduced the frequency of clonogenic progenitors, concomitant with c-Myc down-regulation. Surviving RA-treated cells retained the ability to be replated and this was associated with sustained c-Myc expression and repression of Dusp6, suggesting a role for these genes in maintaining a self-renewal pathway triggered by PLZF-RAR alpha. (Blood. 2009; 114: 5499-5511)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T-box 2 (TBX2) is a transcription factor involved in mammary development and is known to be overexpressed in a subset of aggressive breast cancers. TBX2 has previously been shown to repress growth control genes such as p14(ARF) and p21(WAF1/cip1). In this study we show that TBX2 drives proliferation in breast cancer cells and this is abrogated after TBX2 small interfering RNA (siRNA) knockdown or after the expression of a dominant-negative TBX2 protein. Using microarray analysis we identified a large cohort of novel TBX2-repressed target genes including the breast tumour suppressor NDRG1 (N-myc downregulated gene 1). We show that TBX2 targets NDRG1 through a previously undescribed mechanism involving the recruitment of early growth response 1 (EGR1). We show EGR1 is required for the ability of TBX2 to repress NDRG1 and drive cell proliferation. We show that TBX2 interacts with EGR1 and that TBX2 requires EGR1 to target the NDRG1 proximal promoter. Abrogation of either TBX2 or EGR1 expression is accompanied by the upregulation of cell senescence and apoptotic markers. NDRG1 can recapitulate these effects when transfected into TBX2-expressing cells. Together, these data identify a novel mechanism for TBX2-driven oncogenesis and highlight the importance of NDRG1 as a growth control gene in breast tissue. Oncogene (2010) 29, 3252-3262; doi: 10.1038/onc.2010.84; published online 29 March 2010