45 resultados para luminescence Ir(III)-complexes cyclometallation azole-ligands
Resumo:
Ionic liquids were used as solvents for dispersing luminescent lanthanide-doped LaF3:Ln(3+) nanocrystals (Ln(3+) = Eu3+ and Nd3+). To increase the solubility of the inorganic nanoparticles in the ionic liquids, the nanocrystals were prepared with different stabilizing ligands, i.e., citrate, N,N,N-trimethylglycine (betaine), and lauryldimethylglycine (lauryl betaine). LaF3:5%Ln(3+) :betaine could successfully be dispersed in 1-butyl-1-methylpyrrolidinium bis(tiifluoromethylsulfonyl)imide [C(4)mpyr][Tf2N], 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate [C(4)mpyr][TfO], and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)mim][Tf2N] but only in limited amounts. Red photoluminescence was observed for the europium(III)-containing nanoparticles and near-infrared luminescence for the neodymium(III)-containing systems.
Resumo:
The formation of pentanuclear copper(ii) complexes with the mandelohydroxamic ligand was studied in solution by electrospray ionization mass spectrometry (ESI-MS), absorption spectrophotometry, circular dichroism and H-1 NMR spectroscopy. The presence of lanthanide(iii) or uranyl ions is essential for the self-assembly of the 15-metallacrown-5 compounds. The negative mode ESI-MS spectra of solutions containing copper(II), mandelohydroxamic acid and lanthanide(iii) ions (Ln = La, Ce, Nd, Eu, Gd, Dy, Er, Tm, Lu, Y) or uranyl in the ratio 5:5:1 showed only the peaks that could be unambiguously assigned to the following intact molecular ions: {Ln(NO3)(2)[15-MCuIIN(MHA)-5](2-)}(-) and {Ln(NO3)[15-MCCuIIN(MHA)-5](3-)}(-), where MHA represents doubly deprotonated mandelohydroxamic acid. The NMR spectra of the pentanuclear species revealed only one set of peaks indicating a fivefold symmetry of the complex. The pentanuclear complexes synthesized with the enantiomerically pure R- or S-forms of mandelohydroxamic acid ligand, showed circular dichroism spectra which were mirror images of each other. The pentanuclear complex made from the racemic form of the ligand showed no signals in the CD spectrum. The UV/ Vis titration experiments revealed that the order in which the metal salts are added to the solution of the mandelohydroxamic acid ligand is crucial for the formation of metallacrown complexes. The addition of copper(ii) to the solutions containing mandelohydroxamic acid and neodymium(iii) in a 5:1 ratio lead to the formation of a pentanuclear complex in solution. In contrary, titration of lanthanide(iii) salt to the solution containing copper(ii) and mandelohydroxamic acid did not show any evidence for the formation of pentanuclear species. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)
Resumo:
Proton nuclear magnetic relaxation dispersion (NMRD) profiles were recorded between 0.24 mT and 1.4 T for lanthanum(III)- and gadolinium(III)-containing [15]metallacrown-5 complexes derived from alpha-aminohydroxamic acids and with copper(n) as the ring metal. The influence of the different R-groups on the proton relaxivity was investigated, and a linear relationship between the relaxivity and the molecular mass of the metallacrown complex was found. The selectivity of the metallacrown complexes was tested by transmetalation experiments with zinc(n) ions. The crystal structure of the copper [15]metallacrown-5 gadolinium complex with glycine hydroximate ligands is reported.
Resumo:
Colourless single crystals of [Hg(CF3)(2)(Pur)](4) and [Hg(CF3)(2)(Dat)](2) were obtained from aqueous and etheric solutions of the respective components Purine, (imidazo[4,5-d]pyrimidine, Pur), 3,5-dimethyl-4 '-amino-triazole (Dat) and bis(trifluoromethyl)mercury(II), Hg(CF3)(2). [Hg(CF3)(2)(Pur)](4) crystallizes with the tetragonal system (P-4, Z = 8, a = 1486.8(2), c = 1026.2(l) pm, R-all = 0.0657) with tetrameric molecules consisting of four purine molecules bridged by slightly bent Hg(CF3)2 molecules forming a cage with the CF3 ligands surrounding this cage. The two modifications of [Hg(Dat)(CF3)2]2 (1: 170 K, triclinic, P-1, Z = 2, a 814.9(2), b = 845.4(2), c = 968.4(3) pm, alpha = 106.55(2)degrees, beta= 103.41(2)degrees, gamma = 110.79(2)degrees, R-all = 0.1189; II: monoclinic, P2(1)/c, Z = 8, a = 879.8(2), b = 1731.0(3), c = 1593.9(3) pm, beta = 106.89(2)degrees, R-all = 0.1199) both contain dimeric molecules that are stacked parallel to one crystal axis to strands which are arranged in a parallel fashion in I and rotated against each other in 11 by 110 degrees. In both, the tetrameric [Hg(CF3)(2)(Pur)](4) and the dimeric [Hg(CF3)(2)(Dat)](2) the Hg(CF3)(2) molecules are slightly bent (around 167 and 170 degrees) and rather weakly attached to the N-donor ligands Pur and Dat with Hg-N distances around 272 pm, although in both cases the Hg atoms bridge between two ligand molecules.
Resumo:
Anhydrous neodymium(III) iodide and erbium(Ill) iodide were dissolved in carefully dried batches of the ionic liquid 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(12)mim][Tf2N]. Provided that the ionic liquid had a low water content, intense near-infrared emission could be observed for both the neodymium(III) ion and for the erbium(III) ion. Luminescence lifetimes have been measured, and the quantum yield of the neodymium(III) sample has been measured. Exposure of the hygroscopic samples to atmospheric moisture conditions caused a rapid decrease of the luminescence intensities. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Colourless single crystals of [Hg-2(Pym)](NO3)(2), [Hg-2(Pym)](ClO4)(2) and [Hg-2(Pyp)(2)](ClO4)(2) were obtained from aqueous solutions of the respective components Hg-2(NO3)(2).2H(2)O, Hg-2(ClO4)(2).6H(2)O, pyrimidine (Pym) and pyrazine (Pyp). The crystal structures were determined from single-crystal X-ray diffractometer data. [Hg-2(Pym)](NO3)(2): monoclinic, C2/c, Z = 8, a = 1607.4(2), b = 652.79(7), c = 2000.5(2) pm, beta = 103.42(2)degrees, R-all = 0.0530; [Hg-2(Pym)](ClO4)(2): orthorhombic, Pnma, Z = 4, a = 1182.7(2), b = 1662.5(2), c = 607.9(1) pm, R-all = 0.0438; [Hg-2(Pyp)(2)](ClO4)(2): orthorhombic, Aba2, Z = 4, a = 1529.39(9), b = 1047.10(14), c = 1133.49(15) pm, R-all = 0.0381. The crystal structures of [Hg-2(Pym)](NO3)(2) and [Hg-2(Pym)](ClO4)(2) contain polymeric cationic chains [Hg-2(Pym)](+) that are arranged to corrugated layers between which the anions are situated. [Hg-2(Pyp)(2)](ClO4)(2) consists of polymeric cationic layers that are built from (Hg-2)(2)(Hg-2)(2/2)(Pyp)(4) rings connected to each other; the perchlorate tetrahedra are located between these layers.
Resumo:
Uranium(VI) oxide has been dissolved in three different ionic liquids functionalized with a carboxyl group: betainium bis[trifluoromethyl)sulfonyl]imide, 1-(carboxymethyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, and N-(carboxymethyl)-N-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide. The dissolution process results in the formation of uranyl complexes with zwitterionic carboxylate ligands and bis[trifluoromethyl)sulfonyl]imide (bistriflimide) counterions. An X-ray diffraction study on single crystals of the uranyl complexes revealed that the crystal structure strongly depends on the cationic core appended to the carboxylate groups. The betainium ionic liquid gives a dimeric uranyl complex, the imidazolium ionic liquid a monomeric complex, and the pyrrolidinium ionic liquid a one-dimensional polymeric uranyl complex, Extended X-ray absorption fine structure measurements have been performed on the betainium uranyl complex. The absorption and luminescence spectra of the uranyl betainium complex have been studied in the solid state and dissolved in water, in acetonitrile, and in the ionic liquid betainium bistriflimide. The carboxylate groups remain coordinated to uranyl in acetonitrile and in betainium bistriflimide but not in water.
Resumo:
The new complexes [Pt(dppp)(py)(2)][OTf](2), 1, [Pt(dppp)(2-ap)(2)][OTf](2), 2, [(dppp)Pt(mu -OH){mu -NH(C5H3N)NH2}Pt(dppp)][OTf](2), 3 (py=pyridine, 2-ap=2-aminopyridine, NH(C5H3N)NH2=2,6-diaminopyridine anion, dppp = 1,3-bis(diphenylphosphino)propane, OTf=O3SCF3) have been prepared via reactions between [Pt(dppp)(OTf)(2)] and pyridine, 2-aminopyridine or 2,6-diaminopyridine (2,6-dap) respectively. The amines exhibit a range of co-ordination modes. Pyridine and 2-aminopyridine co-ordinate to platinum through endo-nitrogen atoms in complexes 1 and 2, the latter existing as a pair of rotomers due to the steric hindrance introduced by the 2-substituent. However, 2,6-diaminopyridine co-ordinates to platinum through the exo-nitrogen of one amino group, to give the unusual mu -amido complex 3. Reaction of the known orotate chelate complex [Pt(PEt3)(2)(N,O-HL)] [HL=orotate, the dianion of 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid (orotic acid)] with 2,6-dap gave [Pt(PEt3)(2)(2,6-dap)(N-HL)] 4, which contains an unconventional monodentate orotate ligand. In this co-ordination mode the orotate retains an ADA hydrogen bonding site and was found to co-crystallise with 2,6-dap via complementary ADA:DAD triple hydrogen bonds to give [Pt(PEt3)(2)(N-HL)(2,6-dap)].2,6-dap, 5. Complex 5 exhibits a helical chain structure of associated [1+1] adducts in the solid state.
Resumo:
The new complexes [NEt3H][M(HL)(cod)] (M = Rh 1 or Ir 2; H3L = 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid, erotic acid; cod = cycloocta-1,5-diene) have been prepared by the reaction between [M2Cl2(cod)(2)] and erotic acid in dichloromethane in the presence of Ag2O and NEt3. They crystallise as dichloromethane adducts 1 . CH2Cl2 and 2 . CH2Cl2 from dichloromethane-hexane solutions. These isomorphous structures contain doubly hydrogen-bonded dimers, with additional hydrogen bonding to NEt3H+ cations and bridging CH2Cl2 molecules to form tapes. The use of (NBu4OH)-O-n instead of NEt3 gave the related complex [NBu4n][Rh(HL)(cod)] 1' which has an innocent cation not capable of forming strong hydrogen bonds and in contrast to 1 exists as discrete doubly hydrogen-bonded dimers. Complex 1' cocrystallises with 2,6-diaminopyridine (dap) via complementary triple hydrogen bonds to give [NBu4n][Rh(HL)(cod)]. dap . CH2Cl2 3. Complex 3 exhibits an extended sheet structure of associated [2 + 2] units, with layers of NBu4n, cations separating the sheets. These structural data together with those reported previously for platinum orotate complexes suggest that the steric requirements of the other ligands co-ordinated to the metal are important in influencing their hydrogen-bonding abilities. The solvent of crystallisation, the hydrogen-bonding propensity of the coligand and the nature of the counter ion also determine the type of association in the solid state.
Resumo:
The new anionic functionalized aryldiamine ligands [2,6-(Me(2)NCH(2))(2)-4-R-C6H2](-) (R = Me(3)SiC=C, C6H5, Me(3)Si), formally derived from [2,6-(Me(2)NCH(2))(2)C6H3](-), have been prepared as their lithium compounds. The compound [Li{2,6-(Me(2)NCH(2))(2)-4-Ph-C6H2}](2) crystallizes in the monoclinic space group C2/c (no. 15) with a = 13.1225(5), b = 13.5844(7), c = 15.9859(12) Angstrom, beta = 105.329(5)degrees, V = 3264.0(3)Angstrom(3), Z = 4. The structure refinement converged to R(1) = 0.0374 for 2037 observed reflections [F-o>4 sigma(F-o)] and wR(2) = 0.0922 for 2560 unique data. The organolithium compounds have been used in transmetalation reactions to give the corresponding functionalized organoruthenium(II) complexes [Ru-II{2,6-(Me(2)NCH(2))(2)-4-R-C6H2}(terpy)]Cl-+(-) (terpy = 2,2';6',2 ''-terpyridine). The Ru-II species with R = HC = C has also been synthesized.
Resumo:
Different luminescent, hydrophillic ruthenium diimine cationic complexes are rendered soluble in the hydrophobic medium of a plasticised polymer through ion-pair coupling with a hydrophobic anion, such as tetraphenyl berate. Based on this approach, a number of different oxygen sensitive films, i.e., luminescent, thin plastic films which respond to oxygen-the latter quenches the luminescence were prepared, using the polymer, cellulose acetate, plasticised with tributylphosphate. Of the resultant thin oxygen sensitive films tested, the one containing the luminescent ion-pair ruthenium (II) tris(4,7-diphenyl-1,IO-phenanthroline) ditetraphenyl berate, [Ru(dpp)(3)(2+)(Ph4B-)(2)], was found to be the most sensitive, and its response characteristics were subsequently studied as a function of plasticiser content, temperature and stability in use, and with age. The major response characteristics, i.e., film sensitivity towards oxygen and response and recovery times, depend very strongly upon the overall level of plasticiser present in film; the film is more sensitive and faster in response and recovery the greater the level of plasticiser employed. Thus, the response of the film towards oxygen can be tuned by varying the level of plasticiser in the film. Film sensitivity towards oxygen is largely independent on temperature, whereas its response and recovery times decrease with increasing temperature (E-a = -10.3+/-0.4 kJ mol(-1)). The sensitivity of a typical luminescent film is very stable when used continuously over a 24-h period, decreases by ca. 20% with age when stored at ambient temperature over a period of 29 days, but very little over the same period of time when stored in the freezer section of a fridge. (C) 1997 Elsevier Science S.A.
Resumo:
Two novel alkynyl-bridged symmetric bis-tridentate ligands 1,2-bis(1'-[4'-(2,2':6', 2 ''-terpyridinyl)]-ferrocenyl)ethyne (3a; tpy-Fc-C C-Fc-tpy; Fc = ferrocenyl; tpy = terpyridyl) and 1,4-bis(1'-[4'-(2,2':6', 2 ''-terpyridinyl)]ferrocenyl)-1,3-butadiyne (3b; tpy-Fc-C C-C C-Fc-tpy) and their Ru2+ complexes 6a and 6b have been synthesized and characterized by cyclic voltammetry, UV-vis and luminescence spectroscopy, and in the case of 3b by single-crystal X-ray diffraction. Cyclic voltammograms of both compounds, 3a and 3b, display two severely overlapping ferrocene-based oxidative peaks with only one reductive peak. The redox behavior of 6a and 6b is dominated by the Ru2+/Ru3+ redox couple (E-1/2 from 1.33 to 1.34 V), the Fe2+/Fe3+ redox couples (E-1/2 from 0.46 to 0.80 V), and the tpy/tpy(-)/tpy(2-)redox couples (E-1/2 from -1.19 to -1.48 V). The UV-vis spectra of 6a and 6b show absorption bands assigned to the (1)[(d(pi)(Fe))(6)] -> (1)[(d(pi)(Fe))(5)(pi*(Ru)(tpy))(1)] MMLCT transition at similar to 555 nm. Complexes 6a and 6b are luminescent in H2O-CH3CN (4 : 1, v/v) solution at room temperature, and 6b exhibits the strongest luminescence intensity (lambda(em)(max): 710 nm, Phi(em): 2.28 x 10(-4), tau: 358 ns) relative to analogous ferrocene-based bis(terpyridine) Ru(II) complexes reported so far.