127 resultados para low-inertia hybrid power system
Resumo:
This study proposes an approach to optimally allocate multiple types of flexible AC transmission system (FACTS) devices in market-based power systems with wind generation. The main objective is to maximise profit by minimising device investment cost, and the system's operating cost considering both normal conditions and possible contingencies. The proposed method accurately evaluates the long-term costs and benefits gained by FACTS devices (FDs) installation to solve a large-scale optimisation problem. The objective implies maximising social welfare as well as minimising compensations paid for generation re-scheduling and load shedding. Many technical operation constraints and uncertainties are included in problem formulation. The overall problem is solved using both particle swarm optimisations for attaining optimal FDs allocation as main problem and optimal power flow as sub-optimisation problem. The effectiveness of the proposed approach is demonstrated on modified IEEE 14-bus test system and IEEE 118-bus test system.
Resumo:
Utilization of renewable energy sources and energy storage systems is increasing with fostering new policies on energy industries. However, the increase of distributed generation hinders the reliability of power systems. In order to stabilize them, a virtual power plant emerges as a novel power grid management system. The VPP has a role to make a participation of different distributed energy resources and energy storage systems. This paper defines core technology of the VPP which are demand response and ancillary service concerning about Korea, America and Europe cases. It also suggests application solutions of the VPP to V2G market for restructuring national power industries in Korea.
Resumo:
With the integration of combined heat and power (CHP) units, air-conditioners and gas boilers, power, gas, and heat systems are becoming tightly linked to each other in the integrated community energy system (ICES). Interactions among the three systems are not well captured by traditional methods. To address this issue, a hybrid power-gas-heat flow calculation method was developed in this paper. In the proposed method, an energy hub model was presented to describe interactions among the three systems incorporating various CHP operating modes. In addition, three operating modes were proposed for the ICES including fully decoupled, partially coupled, and fully coupled. Numerical results indicated that the proposed algorithm can be used in the steady-state analysis of the ICES and reflect interactions among various energy systems.
Resumo:
The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency pulsations contained within active power flow. A primary concern is excitation of low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of interconnection between the Northern and Southern power system networks. In order to determine whether the prevalence of wind generation has a negative effect (excites modes) or positive impact (damping of modes) on the power system, oscillations must be measured and characterised. Using time – frequency methods, this paper presents work that has been conducted to extract features from low-frequency active power pulsations to determine the composition of oscillatory modes which may impact on dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.
Resumo:
The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency periodic pulsations contained within the active power flow from different wind farms. A primary concern is excitation of existing low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of the interconnected Northern and Southern power system networks. Recently grid code requirements on the Northern Ireland power system have been updated stipulating that wind farms connected after 2005 must be able to control the magnitude of oscillations in the range of 0.25 - 1.75 Hz to within 1% of the wind farm's registered output. In order to determine whether wind farm low-frequency oscillations have a negative effect (excite other modes) or possibly a positive impact (damping of existing modes) on the power system, the oscillations at the point of connection must be measured and characterised. Using time - frequency methods, research presented in this paper has been conducted to extract signal features from measured low-frequency active power pulsations produced by wind farms to determine the effective composition of possible oscillatory modes which may have a detrimental effect on system dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.
Resumo:
This paper presents the results of feasibility study of a novel concept of power system on-line collaborative voltage stability control. The proposal of the on-line collaboration between power system controllers is to enhance their overall performance and efficiency to cope with the increasing operational uncertainty of modern power systems. In the paper, the framework of proposed on-line collaborative voltage stability control is firstly presented, which is based on the deployment of multi-agent systems and real-time communication for on-line collaborative control. Then two of the most important issues in implementing the proposed on-line collaborative voltage stability control are addressed: (1) Error-tolerant communication protocol for fast information exchange among multiple intelligent agents; (2) Deployment of multi-agent systems by using graph theory to implement power system post-emergency control. In the paper, the proposed on-line collaborative voltage stability control is tested in the example 10-machine 39-node New England power system. Results of feasibility study from simulation are given considering the low-probability power system cascading faults.
Resumo:
The inertia of fixed-speed wind turbine generators (WTGs) helps to mitigate under-frequency transients, promotes fault ride-through and damps inter-area oscillations. It is therefore important to quantify this inertia. The authors use measured wind farm responses during under-frequency transients to provide this information. They discuss the extent of the data and the criteria used to select certain events for further analysis. The estimation of WTG inertia is based on a induction generator model. The basis of the model will be described. The manner in which the model is applied to estimate the inertia from the measured data is then explained. Finally, the implications of the results for power system operation are assessed.
Resumo:
The increased interconnectivity and complexity of supervisory control and data acquisition (SCADA) systems in power system networks has exposed the systems to a multitude of potential vulnerabilities. In this paper, we present a novel approach for a next-generation SCADA-specific intrusion detection system (IDS). The proposed system analyzes multiple attributes in order to provide a comprehensive solution that is able to mitigate varied cyber-attack threats. The multiattribute IDS comprises a heterogeneous white list and behavior-based concept in order to make SCADA cybersystems more secure. This paper also proposes a multilayer cyber-security framework based on IDS for protecting SCADA cybersecurity in smart grids without compromising the availability of normal data. In addition, this paper presents a SCADA-specific cybersecurity testbed to investigate simulated attacks, which has been used in this paper to validate the proposed approach.
Resumo:
Wind energy has been identified as key to the European Union’s 2050 low carbon economy. However, as wind is a variable resource and stochastic by nature, it is difficult to plan and schedule the power system under varying wind power generation. This paper investigates the impacts of offshore wind power forecast error on the operation and management of a pool-based electricity market in 2050. The impact of the magnitude and variance of the offshore wind power forecast error on system generation costs, emission costs, dispatch-down of wind, number of start-ups and system marginal price is analysed. The main findings of this research are that the magnitude of the offshore wind power forecast error has the largest impact on system generation costs and dispatch-down of wind, but the variance of the offshore wind power forecast error has the biggest impact on emissions costs and system marginal price. Overall offshore wind power forecast error variance results in a system marginal price increase of 9.6% in 2050.
Resumo:
This paper presents the background rationale and key findings for a model-based study of supercritical waste heat recovery organic Rankine cycles. The paper’s objective is to cover the necessary groundwork to facilitate the future operation of a thermodynamic organic Rankine cycle model under realistic thermodynamic boundary conditions for performance optimisation of organic Rankine cycles. This involves determining the type of power cycle for organic Rankine cycles, the circuit configuration and suitable boundary conditions. The study focuses on multiple heat sources from vehicles but the findings are generally applicable, with careful consideration, to any waste heat recovery system. This paper introduces waste heat recovery and discusses the general merits of organic fluids versus water and supercritical operation versus subcritical operation from a theoretical perspective and, where possible, from a practical perspective. The benefits of regeneration are investigated from an efficiency perspective for selected subcritical and supercritical conditions. A simulation model is described with an introduction to some general Rankine cycle boundary conditions. The paper describes the analysis of real hybrid vehicle data from several driving cycles and its manipulation to represent the thermal inertia for model heat input boundary conditions. Basic theory suggests that selecting the operating pressures and temperatures to maximise the Rankine cycle performance is relatively straightforward. However, it was found that this may not be the case for an organic Rankine cycle operating in a vehicle. When operating in a driving cycle, the available heat and its quality can vary with the power output and between heat sources. For example, the available coolant heat does not vary much with the load, whereas the quantity and quality of the exhaust heat varies considerably. The key objective for operation in the vehicle is optimum utilisation of the available heat by delivering the maximum work out. The fluid selection process and the presentation and analysis of the final results of the simulation work on organic Rankine cycles are the subjects of two future publications.
Resumo:
A low temperature, isothermal, gas-phase, recyclable process is described for the partial oxidation of methane to methanol over Cu–ZSM-5. Activation in NO at 150 °C followed by methane reaction and steam extraction (both at 150 °C) allowed direct observation of methanol at the reactor outlet.
Resumo:
The development of smart grid technologies and appropriate charging strategies are key to accommodating large numbers of Electric Vehicles (EV) charging on the grid. In this paper a general framework is presented for formulating the EV charging optimization problem and three different charging strategies are investigated and compared from the perspective of charging fairness while taking into account power system constraints. Two strategies are based on distributed algorithms, namely, Additive Increase and Multiplicative Decrease (AIMD), and Distributed Price-Feedback (DPF), while the third is an ideal centralized solution used to benchmark performance. The algorithms are evaluated using a simulation of a typical residential low voltage distribution network with 50% EV penetration. © 2013 IEEE.
Resumo:
The development of appropriate Electric Vehicle (EV) charging strategies has been identified as an effective way to accommodate an increasing number of EVs on Low Voltage (LV) distribution networks. Most research studies to date assume that future charging facilities will be capable of regulating charge rates continuously, while very few papers consider the more realistic situation of EV chargers that support only on-off charging functionality. In this work, a distributed charging algorithm applicable to on-off based charging systems is presented. Then, a modified version of the algorithm is proposed to incorporate real power system constraints. Both algorithms are compared with uncontrolled and centralized charging strategies from the perspective of both utilities and customers. © 2013 IEEE.
Resumo:
The future European power system will have a hierarchical structure created by layers of system control from a Supergrid via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the context of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called 'back-up generation' needed to support an 80% renewable energy portfolio in Europe by 2050. © 2013 IEEE.